Calibration of b-tagging at Tevatron

- 1. A Secondary Vertex Tagger
- 2. Primary and secondary vertex reconstruction
- 3. Tagger characteristics
- 4. Determination of "b-tagging efficiency"
- 5. ("c-tagging efficiency")
- 6. Determination of "mistag rate"
- 7. Systematics

Secondary Vertex Tagger algorithm

 Explicitly reconstruct secondary vertices (other options are counting displaced tracks,...)

■ Used for most DØ top results B(t→Wb)~1

Similar algorithm used by CDF

 Requires the position of the primary interaction (primary vertex or PV)

The Secondary Vertex Tagger Algorithm (SVT)

Three steps

- **I** Reconstruction and identification of a primary vertex (PV)
- Reconstruction of track based jets ("track-jets")
- III. Secondary vertex finding

Step I: determine PV on a per-event basis

- Fit all well reconstructed tracks to a common point of origin,
- 2. Remove tracks with too high χ^2 contributions,
- 3. Repeat with remaining tracks,
 - Select main PV with p_T distribution least consistent with min. bias (DØ),
- 5. Select main PV closest to high p_T lepton or PV highest scalar sum of track p_T (CDF).

Step II: track based jets or "track-jets"

- Pre-clustering: make precluster in Z (along beam axis) of tracks that are nearby in Z. Start from highest p_T tracks.
 - Track selection: associate each precluster to the closest PV, use tracks that have $p_T > 0.5$ GeV, ≥ 1 hit in the most precise section of the silicon, small *dca* and Z_{dca}
 - From the preclusters, the tracks are clustered with a simple cone algorithm, with a track seed of $p_T > 1$ GeV.

Track-jets useful in many other situations...

2.

3.

Step III: Secondary vertex finding

- Start from seed vertices in each track-jet (i.e. all pairs of tracks)
- Add tracks to seed vertices if there χ^2 contribution is not too large
 - Select vertices with ≥ 2 tracks, $|L_{xy}| < 2.6$ cm (within first silicon layer!), $L_{xy} > n \times \sigma(L_{xy})$, (adjust n to required rejection), χ^2 ,... (2 steps in CDF.)

"b-tagged" = there is ≥ 1 SV within $\Delta R = 0.5$ of the calorimeter jet.

August 30, CAT physics

5

Tagger characteristics

Probability to tag a b-jet = "b-tagging efficiency"

Probability to tag a light jet (g, u, d, s) "mistag rate"

 Probability to tag a c-jet "c-tagging efficiency"

These parameters are in general functions of the jet pT and η , Could also be dependent on the PV position, the luminosity, run range ...

Probability to tag a b-jet

To decouple from detector issues, define (CDF and DØ)
Taggable jets, (experiment wide definition)
Tagged jets

A calorimeter jet is taggable if:

- $E_T > 15$ GeV, $|\eta| < 2.5$, (i.e. Jet energy scale is defined!, detector dependent)
- 2. If it contains a track-jet within $\Delta R < 0.5$
 - Some quality requirements on the track-jet.

Later on, derived in 3 regions of z_{PV} (DØ)

Taggability:# taggable jets (E_T, η) Taggability:Taggability $(E_T, \eta) = \cdots$

jets(E_T , η)

Different parameters In CDF

August 30, CAT physics

Taggability

Taggability must be derived from "generic QCD" data

Use same trigger than the signal sample, to incorporate luminosity, run number dependences...

For example ttbar I+4 jet signature, take the events passing the lepton+1 jet trigger

Signal fraction is $\sim 10^{-4}$: so no bias.

Compute taggability in bins of η and p_T Taggability(E_T, η) $\approx k \times Taggability(E_T) \times Taggability(\eta)$

Sample dependence: -Low MET passing EM trigger -μ + jet + high MET sample

Taggability and jet flavor

Taggability derived from data is valid for light flavor jets ONLY.

Higher taggability for heavy flavor jets

Derive correction from MC

 $\begin{array}{l} Taggability(E_{T},\eta,flavor) \ in \ MC\\ C_{taggabiliy}(flavor) = & \\ Taggability(E_{T},\eta,light \ jets) \ in \ MC \end{array}$

Cross check ratio of heavy-enhancedto-light taggability in data and MC, agreement better than 2% level

taggable jets (E_T,η) Taggability(E_T,η,flavor) = C_{taggability}(flavor) × ------# jets(E_T,η)

b-tagging efficiency

b-tagging efficiency is defined by

Derive this quantity from data using a sample enhanced in heavy flavor.

Typically back-to-back dijet events with various taggers: SVT, soft muon or electron tagger ($D\emptyset$ = a muon inside a jet with $p_T^{rel} > 0.7$ GeV, CDF electron inside a jet)

Method introduced in DØ by LEP folks...

b-tagging efficiency from data

Solve system of 8 equations, with 8 unknowns (in bins of η and p_T)

$$n = n_{b} + n_{cl} \qquad \# \text{ events that are c- or light-jets}$$

$$p = p_{b} + p_{cl}$$

$$n^{\mu} = \varepsilon_{b}^{\mu} n_{b} + \varepsilon_{cl}^{\mu} n_{cl}$$

$$p^{\mu} = \varepsilon_{b}^{\mu} p_{b} + \varepsilon_{cl}^{\mu} p_{cl}$$

$$n^{SVT} = \varepsilon_{b}^{JLIP} n_{b} + \varepsilon_{cl}^{JLIP} n_{cl}$$

$$p^{SVT} = \beta \varepsilon_{b}^{JLIP} p_{b} + \alpha \varepsilon_{cl}^{JLIP} p_{cl}$$

$$n^{\mu, SVT} = \varepsilon_{b}^{\mu} \varepsilon_{b}^{JLIP} n_{b} + \varepsilon_{cl}^{\mu} \varepsilon_{cl}^{JLIP} n_{cl}$$

$$p^{\mu, SVT} = \beta \varepsilon_{b}^{\mu} \varepsilon_{b}^{JLIP} n_{b} + \varepsilon_{cl}^{\mu} \varepsilon_{cl}^{JLIP} n_{cl}$$

$$p^{\mu, SVT} = \beta \varepsilon_{b}^{\mu} \varepsilon_{b}^{JLIP} p_{b} + \alpha \varepsilon_{cl}^{\mu} \varepsilon_{cl}^{JLIP} p_{cl}.$$
b- contribution c/light contribution
Extract: sample composition and efficiency of the taggers

 \Rightarrow Makes a number of assumptions... \rightarrow systematic errors

System 8 assumptions and systematics

Decorrelation of the 2 taggers:

 $\epsilon^{\mu,SVT} = c \times \epsilon^{\mu} \times \epsilon^{SVT}$, assume c=1 (MC gives c=1.01±0.01)

Assume that the μ-tagger has same efficiency for c- and light-jets, ok because p_T^{rel} has similar shape for c- and light-jets at Tevatron energy.
 Compare p_T^{rel} templates from several generators

- Assume that c- and light-jet backgrounds can be lumped together, this is characterised by a factor α (varied for systematics)
- Solve the system for various values of p_T^{rel} cut 0.3 1.5 GeV.
- β~1 takes into account correlations b/w p and n samples (varied foe systematics)

b-tagging efficiency

From data we can only extract b-tagging efficiency for muonic b-jets

 $\epsilon^{b \rightarrow \mu, \text{ data}}(E_T, \eta)$

We need the b-tagging efficiency for "all kinds of b-jets"

 $\epsilon^{b}(E_{T},\eta)$

C.Clément

August 30, CAT physics

 $\epsilon_{\tau}^{data}(E_{\tau},\eta)$ extracted in data passing e+jet trigger, with MissingET<10 GeV

Validation:

Alternative parametrization derived from single electron trigger Compare predicted and observed number of negative tags in high MissingET region

Correct for long-lived particles in light-jet sample:

 $SF_{II} = #negative tags/#positive tags in light-flavor QCD Monte Carlo$ Correct for the fraction of heavy flavor in the low MissingET electron sample

 $SF_{hf} = #positive tag from light flavor / # positive tag from all flavors$

 $\epsilon^{\text{light}}(E_T,\eta) = \epsilon_{\text{data}}(E_T,\eta) \times SF_{\text{hf}} \times SF_{\text{ll}}$

Negative tag rate validation

Alternative parametrizations derived:

- from single electron trigger
- (instead of e+jets)

Compare predicted and observed number of negative tags in high MissingET region

August 30, CAT physics

2.5

jet ŋ

Systematic uncertainties

Taggability

Statistical error on parametrization from data

- 2. Variation on the parametrization by changing sample
- Difference b/w predicted and observed # taggable jets at high Njet
- 4. Flavor dependence of taggability: MC dependence

b-tagging efficiency

- Statistical error on semi-muonic b-tagging parametrization from data
- 2. System-8 assumptions
- 3. Ratio of semi-muonic to inclusive b-tagging efficiency in MC (statistical+sample dependence)
- **m.** c-tagging efficiencies
- IV. Mistag rate
 - 1. Negative tag rate, data statistics
 - 2. Negative tag rate, sample dependance
 - 3. Heavy flavor contamination
 - 4. Negative to positive tag ratio for light flavor jets