

- Technical issues
 - SUSYView, Datasets...
- □ Simple inclusive analysis
- Electron ID study
- Event variable study
- Di-Lepton analysis

Conclusions

For the CAT SUSY group:

Amir Farbin, Stefan Ask, Christophe Clement, **Jamie Boyd**, Andreas Hoecker, Wouter Hulsbergen, Nicolas Berger, + students Siva Darbha, Benjamin Sanders + some non CERN effort (Martina Hurwitz, Till Eifert, Olya Igonkina, Richard Teuscher, Johannes Haller)

Amir, Jamie

SUSYView

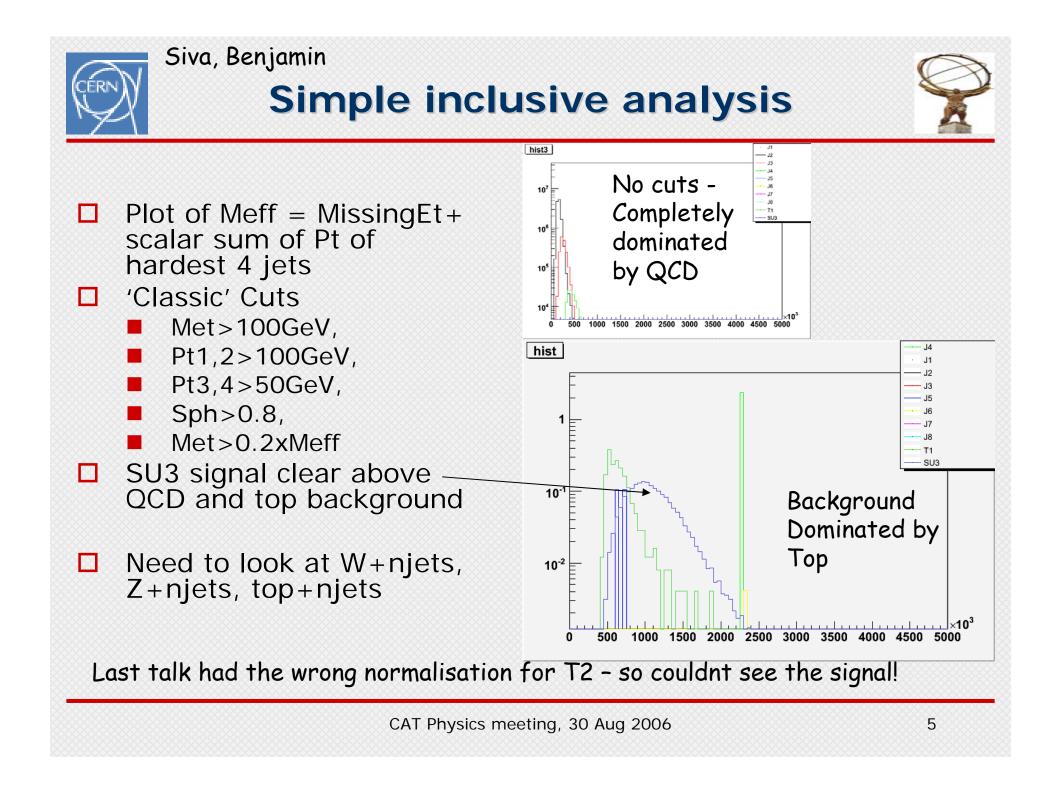
- □ Athena code based on EventView
- Runs on AOD and produces an Athena Aware Ntuple
- Calculates various useful SUSY variables and dumps 4vectors of 'inserted' particles, does truth , reco matching etc..
- Quite a lot of interest from outside CERN (~5 groups using this)
- □ Wiki:

https://twiki.cern.ch/twiki/bin/view/Atlas/SusyView

- Updated to use the new configurables
- Being ported to 12 series now
- We are providing the ntuples (via castor) to the SUSY WG as a service

Datasets

Have run over csc data (reco'd with 11.0.42 or greater)


Sample	Nevts	X-sec (pb)	Lumi
J1	148950	1.38e9	0.11 nb-1
J2	150000	9.33e7	1.61 nb-1
J3	140700	5.88e6	23.9 nb-1
J4	130000	3.08e5	422 nb-1
J5	119000	1.25e4	9.52 pb-1
J6	86750	3.60e2	241 pb-1
J7	86100	5.71e0	15.1 fb-1
J8	91750	2.40e-1	382 fb-1
Wenu	31700	1.12e4	2.83 pb-1
Zee	48350	1.32e3	36.6 pb-1
T1	143800	4.61e2	249 pb-1
SU2	56550	4.90e0	11.5 fb-1
SU3	125000	19.3	6.5 fb-1
SU8	39000	?	?

Want to run on T2 but cant find any csc data for this??

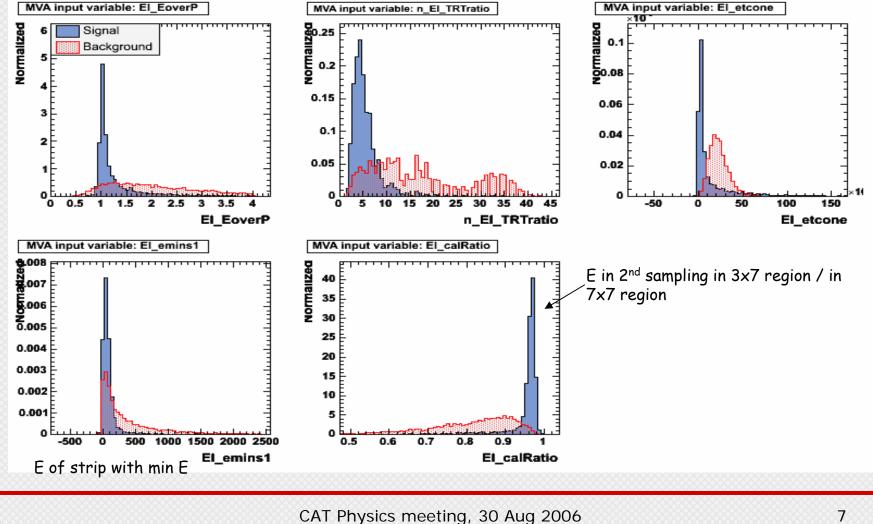
- Subscribed to many datasets using dq2
 - Means the data is automatically copied to cern castor as it is produced
 - Nice book-keeping table from Benjamin Sanders keeps track of what is available there
 - $\underline{https://twiki.cern.ch/twiki/bin/viewfile/Main/AtlasSusyCernLocal?rev=7; filename=AOD_tracker.pdf$
 - could be useful for others too
- Running SUSYView on the cat queues (atlascationg)
- □ Written some scripts to aid production
 - Copy AOD files from castor to batch worker
 - Write root file to batch worker
 - Copy root files to castor (disk pool) when job ends
- Allows large(ish) ntuple production in easy way (~5% jobs die mostly due to castor problems)
- Problem using castor disk pool for analysis (we copy the ntuples to local disk for use with root)
- □ Others are welcome to use our scripts if they are useful

Electron Id study

- Trying to develop an Electron selection with excellent jet rejection for use in inclusive jets + 1 lepton, and 2 lepton SUSY analyses
- Configured SUSYView to produce specific ntuple for this study – dump all possible useful EI ID variables that are in the AOD (including associated tracks and clusters)
 - For signal start from truth El's in SU2,3,8 samples and if there is a matching (in DeltaR) reconstructed El, dump El ID variables
 - For background run on J1-J8 samples dump EI ID variables of any reconstructed Electrons found in these samples (as there should be no true isolated electrons in these samples)
- Look at the variables in TMVA to choose which are the best and to come up with a discriminant
- □ This study also useful as

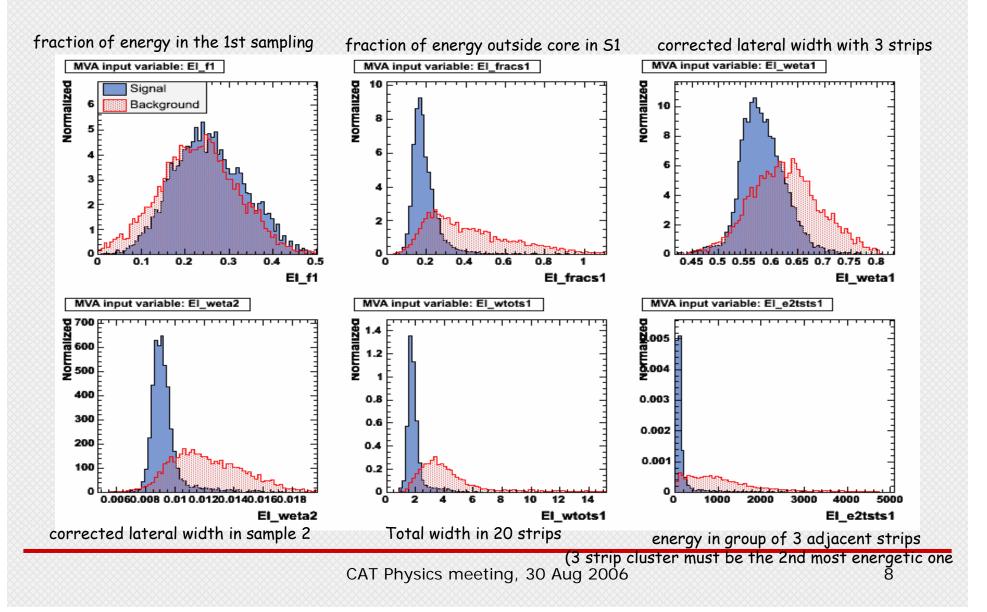
Christophe, Jamie, Andreas

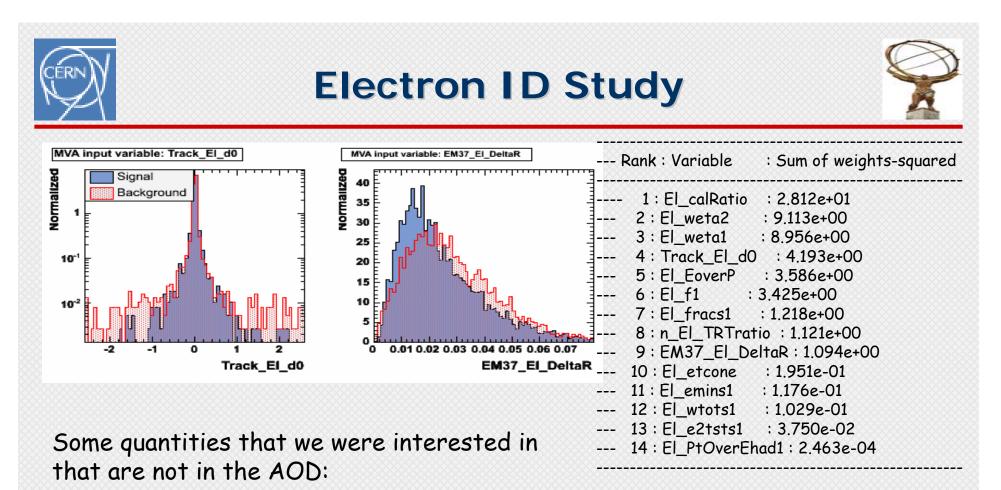
- Check e-gamma (isEM) selection makes sense
- Check that useful quantities are in the AOD
- Validate the new CSC data (eg. Many Muon quantities bad)



Electron ID study

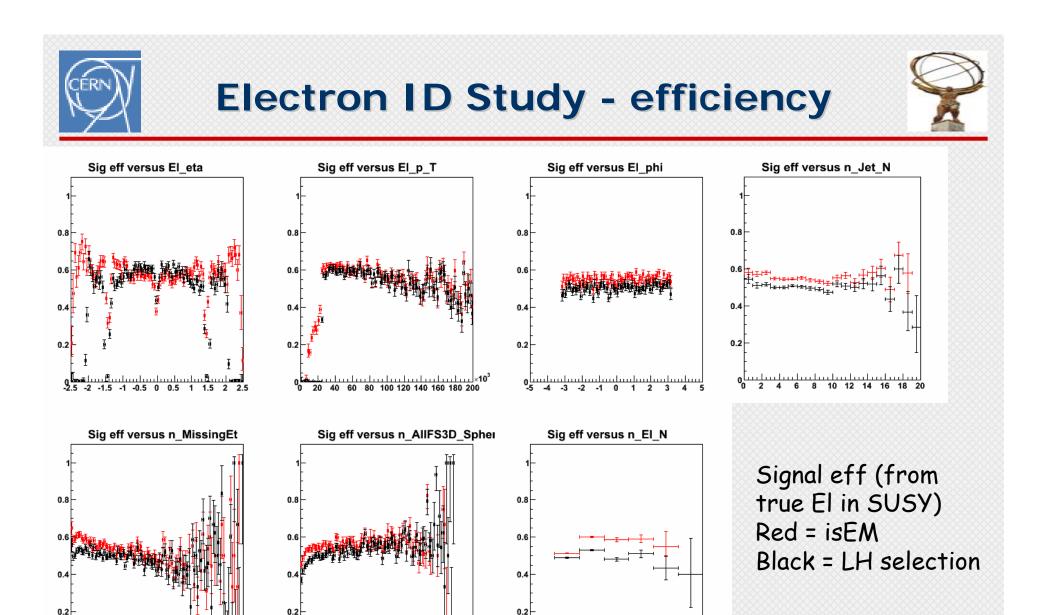
NTRTHit/NTRTHiThreshHit


Et in a DR=0.45 cone around shower (shower energy not included)



Electron ID study

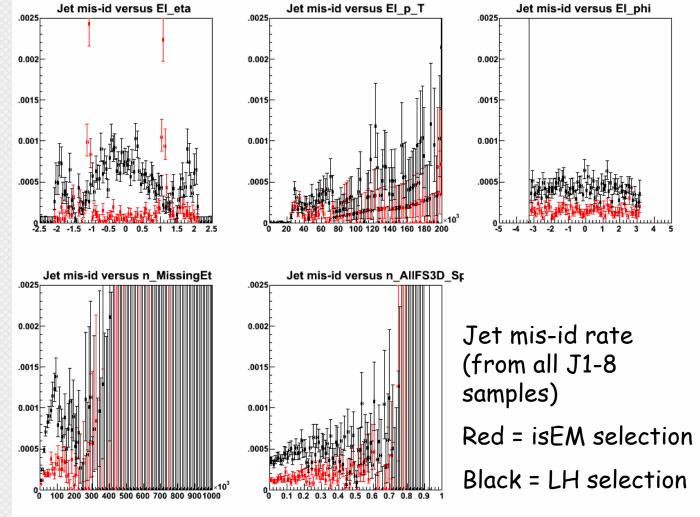
 Track / Cluster match (DeltaPhi, DeltaEta, match chi²)

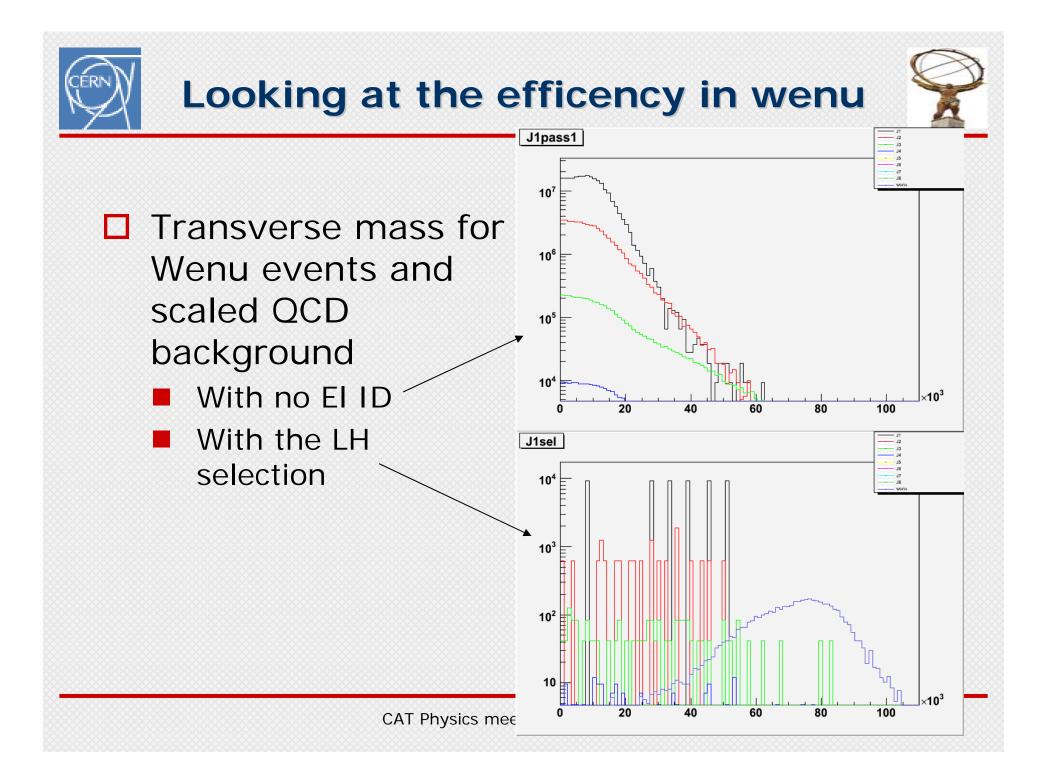

Want to add track isolation.

Only looking at e-gamma electrons for now (Author==1) pre cuts Et>25GeV, eta<2.4

- Create a LH discriminants using these variables
 - Discriminants in 2 eta bins (>,<1.0) (would like to have more bins but MC stats don't allow training)</p>
 - E-gamma isEM cuts have 14 bins in eta!
- Look at El eff and Jet rejection compare to standard isEM selection
- □ Look at dependencies on event variables
 - If we measure the efficiency in wenu, zee can we trust it on SUSY events?
- Some variables used in isEM not available in AOD

 $0 \begin{bmatrix} 1 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 &$ 3


2


5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

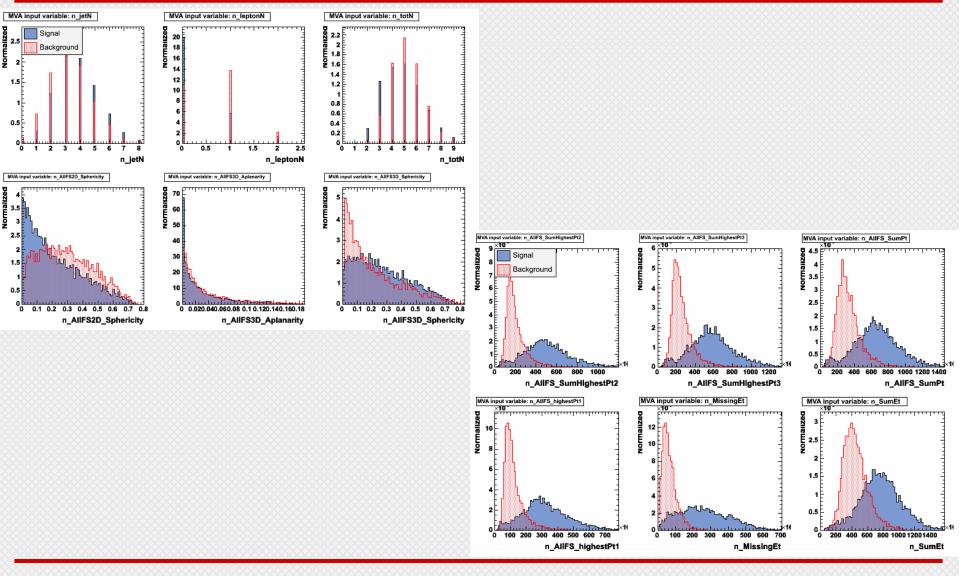
0 100 200 300 400 500 600 700 800 900 1000

- LH selection not as good as isEM but we have hope that adding more variables and training in better bins will be as good if not better
- □ Want to also try NN
- Plan to add in the tracks in a cone around the electron candidate
 - Improve isolation criteria (no track isolation at the moment)
 - Reject photon conversions (tracks in very tight cone)
- Probably want to come up with 3 selections
 - Calorimeter based, Everything based, something in between (no TRT?)
- Study how to measure the efficiency and mis-id from the data (wenu transverse mass, zee mass spectrum)
- Presenting this at the next SUSY WG meeting (13th Sept)

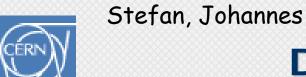
Andreas

Event Variables

- SUSYView ntuples contain many event variables: Sphericity, Aplanarity, ESum, highest P, ...
- Use TMVA to rank these in order of discrimination power for different SUSY points versus background
- Very preliminary look at discriminating SU3 from top (T1):



--- Rank : Variable : Discr. power


- ---- 1 : n_all_Meff : 5.017e-01
- ---- 2 : n_MissingEt : 4.517e-01
- --- 3 : n_AllFS_highestPt1 : 4.253e-01
- --- 4 : n_AllFS_SumHighestPt2 : 4.218e-01
- --- 5 : n_AllFS_SumHighestPt3 : 4.172e-01
- ---- 6 : n_AIIFS_SumPt : 3.837e-01
- ---- 7 : n_totSum_E_T : 3.825e-01
- ---- 8 : n_SumEt : 3.433e-01
- ---- 9 : n_leptonN : 6.710e-02
- --- 10 : n_AllFS2D_Sphericity : 4.169e-02
- --- 11 : n_jetN : 3.021e-02
- --- 12 : n_AllFS3D_Sphericity : 2.453e-02
- --- 13 : n_totN : 8.877e-03
- --- 14 : n_AllFS3D_Aplanarity : 5.317e-04

Event variables

CAT Physics meeting, 30 Aug 2006

Di-Lepton Study

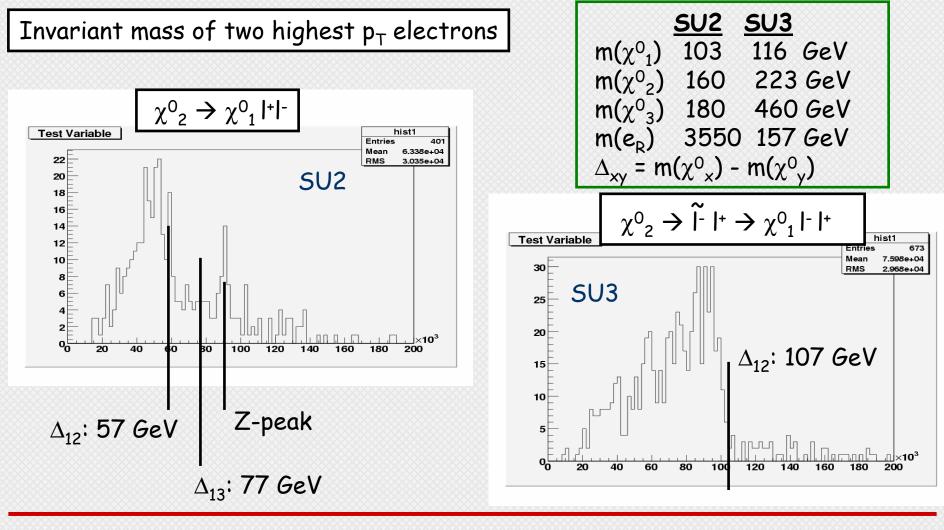
Initial Approach:

- Produce ROOT tree files using SUSYView
 - "Standard" EventView particle ID used for now (to be refined by results from lepton ID study)
 - To minimize file size, tree tailored for di-lepton study
- Produced test sample,
 - To debug our analysis frame work and for first iteration of tree content

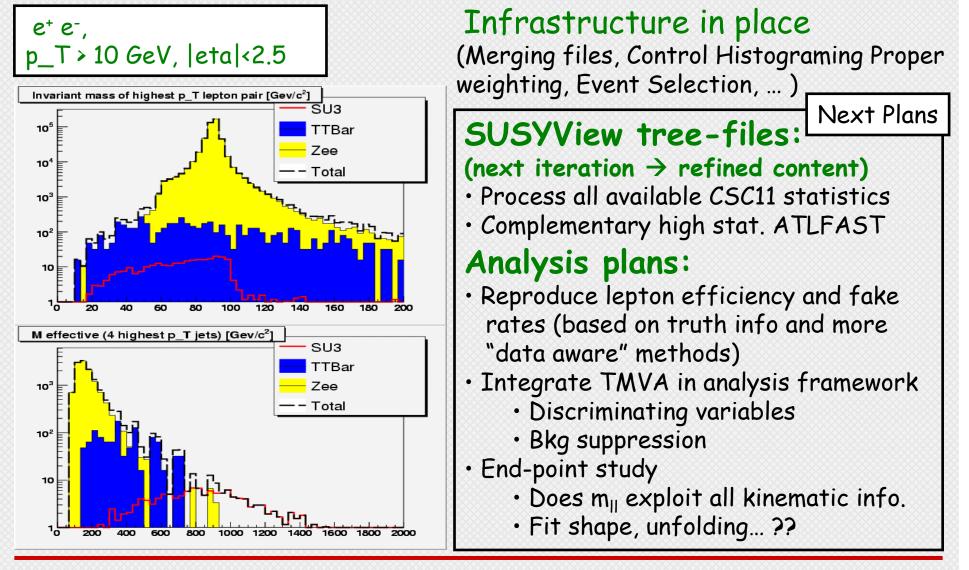
All based on CSC11 samples, but only fraction of available statistics

•SU2, SU3	(sample 5402-5403, v11000505)		
• Zee	(sample 5144,	v11004201)	
• T1	(sample 5200,	v11004204)	

<u>Many samples missing!</u> QCD jets, T2 jets W/Z+jets ...


- "Home-made" high-level ROOT analysis framework: SFrame
 - \rightarrow Builds on SUSYView ntuples
 - → Provides proper event weighting, monitoring and reduces original ntuple information by calling iterative processing cycles

Some First Checks/Results


Check that invariant mass structure is present (not normalized...)

Results and Plans

- SUSYView Production becoming more automated and easy to run
- Detailed electron ID study being undertaken
- Starting to Look at what are the best event variables for distinguishing SUSY from background
- □ Starting di-lepton endpoint analysis
- □ CAT SUSY group will be contributing to the CSC notes
 - QCD background fighting & estimation from data (SUSY3)
 - Inclusive studies for SUSY events (SUSY5)
 - DiLepton edges (SUSY6,7)