
Chains of functional primitives

Jim Pivarski

Princeton University – DIANA

May 23, 2016

1 / 20

Many ways to write a loop

I = 0
J = 0

100 I = I + 1
IF (I .GT. NEVENT) THEN

GO TO 200
EVENT = EVENTS(I)
IF (CONDIT(EVENT)) THEN

GO TO 100
J = J + 1
OUTPUT(J) = CALCUL(EVENT)
GO TO 100

200 ! ...

for (i = 0; i < nEvents; i++) {
event = events[i];
if (condition(event))

continue;
output.push_back(

calculation(event));
}

val output = events.filter(condition).map(calculation)

“condition” and “calculation” are user-defined functions
passed as arguments to “filter” and “map.”

2 / 20

Many ways to write a loop

I = 0
J = 0

100 I = I + 1
IF (I .GT. NEVENT) THEN

GO TO 200
EVENT = EVENTS(I)
IF (CONDIT(EVENT)) THEN

GO TO 100
J = J + 1
OUTPUT(J) = CALCUL(EVENT)
GO TO 100

200 ! ...

for (i = 0; i < nEvents; i++) {
event = events[i];
if (condition(event))

continue;
output.push_back(

calculation(event));
}

val output = events.filter(condition).map(calculation)

“condition” and “calculation” are user-defined functions
passed as arguments to “filter” and “map.”

3 / 20

Restricting the language

“Go to” statements allowed extreme flexibility in program flow,
usually too much, adding unwanted complexity.

Flow control statements (if, for) also provide more power than is
often needed.

for (i = 0; i < nEvents; i++) {
event = events[i];
if (condition(event))

continue;
output.push_back(

calculation(event));
}

val output = events.
filter(condition).
map(calculation)

The map/filter functional chain says less than the for loop.

“Step through the events in order, skip if
the condition is met, and incrementally
grow the output list.”

“Remove events for which the
condition holds and apply the
calculation to the remainder.”

4 / 20

Restricting the language

“Go to” statements allowed extreme flexibility in program flow,
usually too much, adding unwanted complexity.

Flow control statements (if, for) also provide more power than is
often needed.

for (i = 0; i < nEvents; i++) {
event = events[i];
if (condition(event))

continue;
output.push_back(

calculation(event));
}

val output = events.
filter(condition).
map(calculation)

The map/filter functional chain says less than the for loop.

“Step through the events in order, skip if
the condition is met, and incrementally
grow the output list.”

“Remove events for which the
condition holds and apply the
calculation to the remainder.”

5 / 20

Restricting the language

“Go to” statements allowed extreme flexibility in program flow,
usually too much, adding unwanted complexity.

Flow control statements (if, for) also provide more power than is
often needed.

for (i = 0; i < nEvents; i++) {
event = events[i];
if (condition(event))

continue;
output.push_back(

calculation(event));
}

val output = events.
filter(condition).
map(calculation)

The map/filter functional chain says less than the for loop.

“Step through the events in order, skip if
the condition is met, and incrementally
grow the output list.”

“Remove events for which the
condition holds and apply the
calculation to the remainder.”

6 / 20

Why restrict capabilities?

for (i = 0; i < nEvents; i++) {
event = events[i];
if (condition(event))

continue;
output.push_back(

calculation(event));
}

val output = events.
filter(condition).
map(calculation)

I The for loop body could have operated on multiple events at
once, but didn’t in this case. The map functional cannot ever.
Compilers and runtime environments can take advantage of
this knowledge for vectorization or parallelization.

I Left: output.push back doesn’t know how large the output
can be and has to dynamically allocate.
Right: output.size <= events.size; allocate and trim.

I To repartition the for loop, the user must be involved in the
index arithmetic; the functionals are more abstract.

7 / 20

Why restrict capabilities?

for (i = 0; i < nEvents; i++) {
event = events[i];
if (condition(event))

continue;
output.push_back(

calculation(event));
}

val output = events.
filter(condition).
map(calculation)

I The for loop body could have operated on multiple events at
once, but didn’t in this case. The map functional cannot ever.
Compilers and runtime environments can take advantage of
this knowledge for vectorization or parallelization.

I Left: output.push back doesn’t know how large the output
can be and has to dynamically allocate.
Right: output.size <= events.size; allocate and trim.

I To repartition the for loop, the user must be involved in the
index arithmetic; the functionals are more abstract.

8 / 20

Why restrict capabilities?

for (i = 0; i < nEvents; i++) {
event = events[i];
if (condition(event))

continue;
output.push_back(

calculation(event));
}

val output = events.
filter(condition).
map(calculation)

I The for loop body could have operated on multiple events at
once, but didn’t in this case. The map functional cannot ever.
Compilers and runtime environments can take advantage of
this knowledge for vectorization or parallelization.

I Left: output.push back doesn’t know how large the output
can be and has to dynamically allocate.
Right: output.size <= events.size; allocate and trim.

I To repartition the for loop, the user must be involved in the
index arithmetic; the functionals are more abstract.

9 / 20

Separation of concerns

val output = events.filter(condition).map(calculation)

could mean

I Generate inline code for condition and calculation and
vectorize the calculation.

I Evaluate them in a thread execution pool.

I Launch parallel jobs on a worldwide grid.

I Construct a CUDA kernel and pass condition and
calculation to the GPU.

I Construct an intermediate list after filter and before map.

I Lazy-evaluate the filter, treating it like a Python iterator
(no intermediate list).

Although these choices have significant performance consequences,
they are secondary to the intention expressed in that line of code.

10 / 20

Not just for LISP programmers

This style is fairly common among data analysts:

I R code is full of apply/lapply/tapply, and the R users I
know try to avoid for loops whenever possible.

I “Map-reduce” launched an industry around Hadoop, and
functional chains are the central paradigm of Spark.

I Functional primitives are hidden in the SELECT, WHERE, and
GROUP BY, clauses of SQL.

I LINQ, the data extraction sublanguage of .NET, is heavily
functional.

I d3, a popular visualization library for Javascript, also
manipulates data with functional chains.

Although it restricts flexibility, this paradigm seems to fit data
analysis well.

11 / 20

Switching to this paradigm requires the user to become familiar
with some functional primitives.

I Adopt the “there’s an app for that” mentality.

12 / 20

Transforming one table into another

input function output operation

map table
of A

f : A→ B table
of B

apply f to each row A, get
a table of the same number
of rows B

a.k.a. “lapply” (R), “SELECT” (SQL), list comprehension (Python)

filter table
of A

f : A→
boolean

table
of A

get a shorter table with the
same type of rows

a.k.a. single brackets (R), “WHERE” (SQL), list comprehension (Python)

flatMap table
of A

f : A→
table of B

table
of B

compose map and flatten,
get a table of any length

a.k.a. “map” (Hadoop), “EXPLODE” (SQL), >>= (Haskell)

13 / 20

Summarizing a table with a counter

input function(s) output operation

reduce table of A f : (A,A)→ A single
value
A

apply f to the
running sum and
one more
element

aggregate table of A,
initial value
B (“zero”)

f : (A,B)→ B
f : (B,B)→ B
(increment and

combine)

single
value
B

accumulate a
counter with a
different data
type from the
input

aggregate
by key

table of
〈K ,A〉, initial

value B

f : (A,B)→ B
f : (B,B)→ B

pairs
〈K ,B〉

aggregate
independently
for each key

a.k.a. “reduce” (Hadoop), “GROUP BY” (SQL)

14 / 20

What if I want to mix events?

More exotic functionals can handle specific cases.

For instance,

I collection.skip(n) to offset a collection by n

I zip(collections*) to walk through collections in lock-step

can be combined to compare an event with the previous event:

zip(events, events.skip(1)).map(operation_on_pairs)

Or perform nested loops (SQL JOIN):

I cartesian to loop over all pairs i , j of a collection

I triangular to loop over pairs i , j ≥ i of a collection

Different functional names because the user thinks of them
differently; each would have to be optimized differently, anyway.

15 / 20

Histogrammar

This is very similar to what I’m doing with Histogrammar
(https://github.com/diana-hep/histogrammar), which
introduces a dozen functional primitives that are all variations on
aggregate.

histogram = Bin(100, 0, 20, fill_rule, Count())

hist2d = Bin(binsX, lowX, highX, fillX,
Bin(binsY, lowY, highY, fillY, Count()))

profile = Bin(binsX, lowX, highX, fillX, Deviate(fillY))

box_whiskers = Bin(binsX, lowX, highX, fillX, Branch(
Minimize(fillY), Quantile(0.25, fillY), Quantile(0.5, fillY),
Quantile(0.75, fillY), Maximize(fillY)))

unknown_support = SparselyBin(binWidth, fillX, Count())

efficiency = Fraction(cut, Bin(100, 0, 20, fill_rule, Count()))

where all fill rules are lambda functions.
16 / 20

https://github.com/diana-hep/histogrammar

Lambda functions

To be fluent, one needs a good syntax for lambdas.

C++ [](Datum d){return sqrt(d.px*d.px + d.py*d.py);}

Scala {d: Datum => Math.sqrt(d.px*d.px + d.py*d.py)}

Python lambda d: math.sqrt(d.px**2 + d.py**2)

R function (d) { sqrt(d.pxˆ2 + d.pyˆ2) }

17 / 20

Lambda functions

Unlike all the rest, Python lambdas are fundamentally limited to
one-line expressions (no statements, such as local assignment).

I have some code (written in Python) that extends Python’s
grammar to include multiline assignments like this:

lambda d: sqrt(d.px**2 + d.py**2)

def(d -> sqrt(d.px**2 + d.py**2))

def(x -> y = sqrt(x),
z = 2*y,
z**2)

or even

def(x -> y = sqrt(x),
z = 2*y if y < 1,

3*y if y < 2,
4*y else,

z**2)

which might be useful for extended functionals in Python.

18 / 20

Suite of examples

I also have a suite of functional primitives with näıve
implementations in the attached functional chains.py.

class Data(object):
def __init__(self, generator):

self.generator = generator

def map(self, fcn):
return Data(fcn(x) for x in self.generator)

def filter(self, fcn):
return Data(x for x in self.generator if fcn(x))

def flatMap(self, fcn):
return Data(itertools.chain.from_iterable(fcn(x) for x

in self.generator))

...

19 / 20

Suite of examples

...with comparisons to TTree.Draw strings in PyROOT.

ttree.Draw("fTracks.fPx >> hPx")
assert Data.source().flatMap(lambda event: event.fTracks).

map(lambda track: track.fPx).verify("hPx")

ttree.Draw("fMatrix[][0] >> hMatrix0")
assert Data.source().flatMap(lambda _: _.fMatrix[:,0]).

verify("hMatrix0")

ttree.Draw("fTemperature - 20 * Alt$(fClosestDistance[9], 0) " +
">> hClosestDistanceAlt")

assert Data.source().filterMap(lambda _: _.fTemperature - 20 *
_.fClosestDistance.getOrElse(9, 0.0)).
verify("hClosestDistanceAlt")

20 / 20

