Chains of functional primitives

Jim Pivarski

Princeton University – DIANA

May 23, 2016
Many ways to write a loop

```
I = 0
J = 0
100 I = I + 1
   IF (I .GT. NEVENT) THEN
      GO TO 200
   EVENT = EVENTS(I)
   IF (CONDIT(EVENT)) THEN
      GO TO 100
   J = J + 1
   OUTPUT(J) = CALCUL(EVENT)
   GO TO 100
200 ! ...
```

```python
for i = 0; i < nEvents; i++ do {
  event = events[i];
  if (condition(event))
    continue;
  output.push_back(
    calculation(event));
}
```

val output = events.filter(condition).map(calculation)
Many ways to write a loop

```
I = 0
J = 0
100  I = I + 1
    IF (I .GT. NEVENT) THEN
        GO TO 200
    EVENT = EVENTS(I)
    IF (CONDIT(EVENT)) THEN
        GO TO 100
    J = J + 1
    OUTPUT(J) = CALCUL(EVENT)
    GO TO 100
200 ! ...
```

```
for (i = 0; i < nEvents; i++) {
    event = events[i];
    if (condition(event))
        continue;
    output.push_back(
        calculation(event));
}
```

```
val output = events.filter(condition).map(calculation)
```

“condition” and “calculation” are user-defined functions passed as arguments to “filter” and “map.”
"Go to" statements allowed extreme flexibility in program flow, usually too much, adding unwanted complexity.
“Go to” statements allowed extreme flexibility in program flow, usually too much, adding unwanted complexity.

Flow control statements (if, for) also provide more power than is often needed.

```java
for (i = 0; i < nEvents; i++) {
    event = events[i];
    if (condition(event))
        continue;
    output.push_back(calculation(event));
}
```
“Go to” statements allowed extreme flexibility in program flow, usually too much, adding unwanted complexity.

Flow control statements (if, for) also provide more power than is often needed.

```plaintext
for (i = 0; i < nEvents; i++) {
    event = events[i];
    if (condition(event))
        continue;
    output.push_back(calculation(event));
}
```

The map/filter functional chain says less than the for loop.

“Step through the events in order, skip if the condition is met, and incrementally grow the output list.”

“Remove events for which the condition holds and apply the calculation to the remainder.”
Why restrict capabilities?

```java
for (i = 0; i < nEvents; i++) {
    event = events[i];
    if (condition(event))
        continue;
    output.push_back(calculation(event));
}
```

- The for loop body could have operated on multiple events at once, but didn’t in this case. The map functional cannot ever. Compilers and runtime environments can take advantage of this knowledge for vectorization or parallelization.
Why restrict capabilities?

```java
for (i = 0; i < nEvents; i++) {
    event = events[i];
    if (condition(event))
        continue;
    output.push_back(
        calculation(event));
}

val output = events.
    filter(condition).
    map(calculation)

- The for loop body could have operated on multiple events at once, but didn’t in this case. The map functional cannot ever. Compilers and runtime environments can take advantage of this knowledge for vectorization or parallelization.

- Left: output.push_back doesn’t know how large the output can be and has to dynamically allocate.
  Right: output.size <= events.size; allocate and trim.
for (i = 0; i < nEvents; i++) {
    event = events[i];
    if (condition(event))
        continue;
    output.push_back(
        calculation(event));
}

val output = events.
    filter(condition).
    map(calculation)

- The for loop body could have operated on multiple events at once, but didn’t in this case. The map functional cannot ever. Compilers and runtime environments can take advantage of this knowledge for vectorization or parallelization.

- Left: output.push_back doesn’t know how large the output can be and has to dynamically allocate.
  Right: output.size <= events.size; allocate and trim.

- To repartition the for loop, the user must be involved in the index arithmetic; the functionals are more abstract.
Separation of concerns

```scala
val output = events.filter(condition).map(calculation)
```

could mean

▶ Generate inline code for `condition` and `calculation` and vectorize the calculation.
▶ Evaluate them in a thread execution pool.
▶ Launch parallel jobs on a worldwide grid.
▶ Construct a CUDA kernel and pass `condition` and `calculation` to the GPU.
▶ Construct an intermediate list after `filter` and before `map`.
▶ Lazy-evaluate the `filter`, treating it like a Python iterator (no intermediate list).

Although these choices have significant performance consequences, they are secondary to the intention expressed in that line of code.
This style is fairly common among data analysts:

- R code is full of `apply/lapply/tapply`, and the R users I know try to avoid for loops whenever possible.
- “Map-reduce” launched an industry around Hadoop, and functional chains are the central paradigm of Spark.
- Functional primitives are hidden in the `SELECT`, `WHERE`, and `GROUP BY`, clauses of SQL.
- LINQ, the data extraction sublanguage of .NET, is heavily functional.
- d3, a popular visualization library for Javascript, also manipulates data with functional chains.

Although it restricts flexibility, this paradigm seems to fit data analysis well.
Switching to this paradigm requires the user to become familiar with some functional primitives.

- Adopt the “there’s an app for that” mentality.
## Transforming one table into another

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input</th>
<th>Function</th>
<th>Output</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>map</strong></td>
<td>table of $A$</td>
<td>$f : A \to B$</td>
<td>table of $B$</td>
<td>apply $f$ to each row $A$, get a table of the same number of rows $B$</td>
</tr>
<tr>
<td><strong>filter</strong></td>
<td>table of $A$</td>
<td>$f : A \to \text{boolean}$</td>
<td>table of $A$</td>
<td>get a shorter table with the same type of rows</td>
</tr>
<tr>
<td><strong>flatMap</strong></td>
<td>table of $A$</td>
<td>$f : A \to \text{table of } B$</td>
<td>table of $B$</td>
<td>compose map and flatten, get a table of any length</td>
</tr>
</tbody>
</table>

a.k.a. “lapply” (R), “SELECT” (SQL), list comprehension (Python)

a.k.a. single brackets (R), “WHERE” (SQL), list comprehension (Python)

a.k.a. “map” (Hadoop), “EXPLODE” (SQL), $\gg=\gg$ (Haskell)
### Summarizing a table with a counter

<table>
<thead>
<tr>
<th></th>
<th>input</th>
<th>function(s)</th>
<th>output</th>
<th>operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduce</td>
<td>table of (A)</td>
<td>(f : (A, A) \rightarrow A)</td>
<td>single</td>
<td>apply (f) to the running sum and one more element</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(A)</td>
<td></td>
</tr>
<tr>
<td>aggregate</td>
<td>table of (A), initial</td>
<td>(f : (A, B) \rightarrow B)</td>
<td>single</td>
<td>accumulate a counter with a different data type</td>
</tr>
<tr>
<td></td>
<td>value (B) (&quot;zero&quot;)</td>
<td>(f : (B, B) \rightarrow B)</td>
<td>value</td>
<td>from the input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(increment and combine)</td>
<td>(B)</td>
<td></td>
</tr>
<tr>
<td>aggregate</td>
<td>table of (\langle K, A\rangle), initial value (B)</td>
<td>(f : (A, B) \rightarrow B)</td>
<td>pairs</td>
<td>aggregate independently for each key</td>
</tr>
<tr>
<td>by key</td>
<td></td>
<td>(f : (B, B) \rightarrow B)</td>
<td>(\langle K, B\rangle)</td>
<td></td>
</tr>
</tbody>
</table>

a.k.a. “reduce” (Hadoop), “GROUP BY” (SQL)
What if I want to mix events?

More exotic functionals can handle specific cases.

For instance,

- `collection.skip(n)` to offset a collection by `n`
- `zip(collections*)` to walk through collections in lock-step

can be combined to compare an event with the previous event:

```
zip(events, events.skip(1)).map(operation_on_pairs)
```

Or perform nested loops (SQL `JOIN`):

- `cartesian` to loop over all pairs `i, j` of a collection
- `triangular` to loop over pairs `i, j ≥ i` of a collection

Different functional names because the user thinks of them differently; each would have to be optimized differently, anyway.
This is very similar to what I’m doing with Histogrammar ([https://github.com/diana-hep/histogrammar](https://github.com/diana-hep/histogrammar)), which introduces a dozen functional primitives that are all variations on aggregate.

```
histogram = Bin(100, 0, 20, fill_rule, Count())

hist2d = Bin(binsX, lowX, highX, fillX,
 Bin(binsY, lowY, highY, fillY, Count()))

profile = Bin(binsX, lowX, highX, fillX, Deviate(fillY))

box_whiskers = Bin(binsX, lowX, highX, fillX, Branch(
 Minimize(fillY), Quantile(0.25, fillY), Quantile(0.5, fillY),
 Quantile(0.75, fillY), Maximize(fillY)))

unknown_support = SparselyBin(binWidth, fillX, Count())

efficiency = Fraction(cut, Bin(100, 0, 20, fill_rule, Count()))
```

where all fill rules are lambda functions.
To be fluent, one needs a good syntax for lambdas.

C++

[](Datum d){\textbf{return }\sqrt{d.px^2 + d.py^2};}

Scala

d: Datum => Math.sqrt(d.px*d.px + d.py*d.py}

Python

\textbf{lambda }d: \textbf{math.sqrt}(d.px**2 + d.py**2)

R

\textbf{function } (d) \{ \textbf{sqrt}(d.px^2 + d.py^2) \}
Lambda functions

Unlike all the rest, Python lambdas are fundamentally limited to one-line expressions (no statements, such as local assignment).

I have some code (written in Python) that extends Python’s grammar to include multiline assignments like this:

\[
\text{def}(d \to \sqrt{d.p\text{x}^2 + d.p\text{y}^2})
\]

or even

\[
\text{def}(x \to y = \sqrt{x},
\quad z = 2y, \\
\quad z^2)
\]

which might be useful for extended functionals in Python.
I also have a suite of functional primitives with naïve implementations in the attached `functional_chains.py`.

```python
class Data(object):
 def __init__(self, generator):
 self.generator = generator

 def map(self, fcn):
 return Data(fcn(x) for x in self.generator)

 def filter(self, fcn):
 return Data(x for x in self.generator if fcn(x))

 def flatMap(self, fcn):
 return Data(itertools.chain.from_iterable(fcn(x) for x in self.generator))

...
...with comparisons to `TTree.Draw` strings in PyROOT.

```python
tree.Draw("fTracks.fPx >> hPx")
assert Data.source().flatMap(lambda event: event.fTracks).
    map(lambda track: track.fPx).verify("hPx")

tree.Draw("fMatrix[:,0] >> hMatrix0")
assert Data.source().flatMap(lambda _: _.fMatrix[:,0]).
    verify("hMatrix0")

tree.Draw("fTemperature - 20 * Alt$(fClosestDistance[9], 0) " +
    ">> hClosestDistanceAlt")
assert Data.source().filterMap(lambda _: _.fTemperature - 20 *
    _.fClosestDistance.getOrElse(9, 0.0)).
    verify("hClosestDistanceAlt")
```