Reconstruction of Neutron Cross-sections and Sampling

Harphool Kumawat Nuclear Physics Division, BARC

25/07/16

Outline

- Introduction
- Reconstruction of resonance cross-section
- Linearization of cross-section
- Unionization
- Doppler broadening at higher temperature

Sampling

- Independent angular distribution
- □ Independent energy distribution
- Energy-angle correlated distribution
- □ Fission fragments and fission neutrons

Introduction: Importance of low energy neutrons

- Most of the neutron applications are in low energy region (<20MeV) i.e. material studies/diffraction, fusion and fission reactors, Nuclear medicine, Radiation dosimetry in accelerator and nuclear devices etc.
- ➢Low energy neutron transport takes significant time in hadron transport because of charge neutrality.
- ➢ Radiation dosimetry and shielding calculations in GEANT4 is not comparable with experimental data.

Introduction: Compound nucleus reactions

➢The absence of coulomb barrier between neutron and nucleus as compared to charge particles makes neutron interactions special.

 \succ It can penetrate deep inside the nucleus even at meV energies.

Introduction: neutron and proton cross-sections

Neutron interactions below 20MeV or 200MeV in some cases.

Neutron cross-sections

Proton cross-sections

25/07/16

Introduction: Evaluated Nuclear Data File

➢Whether model can predict the cross-sections? No

➢Nuclear structure contribute to the final states.

➢No single model for all the Isotopes that can work reasonably well

What is the alternative solution?

➢Evaluated Nuclear Data

Disadvantage

>Too many data points due to resonance structure

25/07/16

Introduction: Evaluated Nuclear Data Library

25/07/16

Introduction: Evaluated Nuclear Data File

- $1 \rightarrow$ General description, Fission neutron multiplicity, partial photon data
- $2 \rightarrow$ Resonance parameters for cross-section
- $3 \rightarrow$ Cross-sections for all reactions
- $4 \rightarrow$ Independent angular distributions
- $5 \rightarrow$ Independent energy distributions
- $6 \rightarrow$ Correlated angle-energy distributions
- $7 \rightarrow$ Thermal neutron scattering data
- $8 \rightarrow$ **Decay data** and fission products
- $9 \rightarrow$ Multiplicities for radio-active nuclide production
- 10 \rightarrow Production cross-section for radio-active nuclide
- 11 \rightarrow General comments for Photon production
- 12 \rightarrow Photon production multiplicities
- 13 \rightarrow Photon production cross-section
- 14 \rightarrow Photon angular distributions
- 15 \rightarrow Continuous photon energy distribution
 - 12 More sections about atomic reactions, errors, photon, election interaction

Introduction: Evaluated Nuclear Data File

How the data file look like ?

[MAT,	2,1	151/	ZA,	AWR	, 0,	Ο,	NIS,	O]HEA	D (NIS=	=1)	
[MAT,	2,1	151/	ZAI,	ABN	, 0,L	FW,	NER,	O]CON	T (ZAI=	ZA, ABN=1, LFW=0, NER=1	L)
[MAT,	2,1	151/	EL,	EH	,LRU,L	RF,	NRO,N	APS]CON	T (LRU=	=0,LRF=0,NRO=0,NAPS=0))
[MAT,	2,1	151/	SPI,	AP	, 0,	Ο,	NLS,	O]CON	T (NLS=	=0)}	
[MAT,	2,	0/	0.0,	0.0	, 0,	Ο,	Ο,	0]SEN	D		
[MAT,	Ο,	0/	0.0,	0.0	, 0,	0,	Ο,	O]FEN	D		
9.2235	500+	+4 2.3	33024	8+2		0		0	1	09228 2151	1
9.2235	500+	F4 1.0	00000	0+0		0		1	2	09228 2151	2
1.0000	000-	5 2.2	250000)+3		1		3	0	19228 2151	3
3.5000	000+	HO 9.	60200	0-1		0		0	1	39228 2151	4
2.3302	200+	F2 9.	60200	0-1		0		0	19158	31939228 2151	5
2.0383	300-	+3 3.	00000	0+0	1.9703	00-2	3.3792	200-2-4.6	65200-2	2-1.008800-19228 2151	6

There are many different sub-sections with different set of parameters and different structures

Introduction: Why point data are not given but parameters

- ➤Too many data point
- We don't understand from collection of points (lack of information about physics)
- Data should be interpreted by nuclear theory so that one can understand the physics
- We should be able to extrapolate and interpolate in the missing energy range
- \succ Experimental information is utmost important to derive useful data.
- \succ Further up-gradation of data is possible

Introduction: Typical cross-section

MONC

25/07/16

Reconstruction: Convert ASCII file to ROOT file

Read all sections from neutron data file

Read data from sub-libraries

a) fission fragment yield
b) decay data
c)
d)
.
.
.

Convert 9.223500+4 data structure into Doubles/Float

Store into ROOT file \rightarrow file size reduces 2-3 times

This is done before simulation into offline mode but one can do during simulation and go for a Coffee break

Reconstruction: Linearization and Unionization

25/07/16

Reconstruction: Total cross-section

This is done before simulation into offline mode but one can do during simulation and go for a Lunch break

Reconstruction: Hydrogen cross-section

Reconstruction: O16 cross-section

Reconstruction: Resonance cross-section

	$1 \rightarrow$ Resonance energy points		
Read Resonance Parameters	$2 \rightarrow \text{Resonance widths}$		
	$3 \rightarrow \text{Resonance types}$		
1 Calculate phase chifts chift for targe	(Single level Breit-Wigner,		
$1 \rightarrow$ Calculate phase shifts, shift factors,	Multi- level Breit-Wigner,		
penetration factors for higher angular			
momenta	Reich-Moore, Adler-Adler,		

Single level Breit-Wigner \rightarrow 8 isotopes R-Matrix)

Multi- level Breit-Wigner \rightarrow 268 isotopes

Reice-Moore \rightarrow 54 isotopes (best results)

Adler-Adler \rightarrow None

R-Matrix \rightarrow None (Very hard to implement)

25

25/07/16

Reconstruction: Single Level Breit Wigner

$$\sigma_{n,n}(E) = \sum_{l=0}^{\mathrm{NLS}-1} \sigma_{n,n}^l(E),$$

Elastic cross-section

$$\begin{aligned} \sigma_{n,n}^{l}(E) &= (2l+1) \frac{4\pi}{k^{2}} \sin^{2} \phi_{l} \\ &+ \frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=1}^{\mathrm{NR}_{J}} \frac{\Gamma_{nr}^{2} - 2\Gamma_{nr}\Gamma_{r} \sin^{2} \phi_{l} + 2(E - E_{r}') \Gamma_{nr} \sin(2\phi_{l})}{(E - E_{r}')^{2} + \frac{1}{4}\Gamma_{r}^{2}} \end{aligned}$$

Capture cross-section

Fission cross-section

$$\sigma_{n,\gamma}(E) = \sum_{l=0}^{\mathrm{NLS}-1} \sigma_{n,\gamma}^{l}(E)$$

$$\sigma_{n,\gamma}^{l}(E) = \frac{\pi}{k^2} \sum_{J} g_J \sum_{r=1}^{\mathrm{NR}_J} \frac{\Gamma_{nr} \Gamma_{\gamma r}}{(E - E_r')^2 + \frac{1}{4}\Gamma_r^2}$$

$$\sigma_{n,f}(E) = \sum_{l=0}^{\mathrm{NLS}-1} \sigma_{n,f}^{l}(E) ,$$

$$\sigma_{n,f}^{l}(E) = \frac{\pi}{k^2} \sum_{J} g_{J} \sum_{r=1}^{\text{NR}_{J}} \frac{\Gamma_{nr} \Gamma_{fr}}{(E - E_{r}')^2 + \frac{1}{4} \Gamma_{r}^2}$$

18

25/07/16

Reconstruction: Multi-Level Breit Wigner

$$\sigma_{n,n}^{l(R)}(E) = \frac{\pi}{k^2} \sum_{J} g_J \sum_{r=1}^{NR_J} \frac{G_r \Gamma_r + 2H_r (E - E_r)}{(E - E_r')^2 + (\Gamma_r/2)^2}$$

Elastic cross-section

$$G_{r} = \frac{1}{2} \sum_{r'=1,r'\neq r}^{\mathrm{NR}_{J}} \frac{\Gamma_{nr}\Gamma_{nr'}(\Gamma_{r}+\Gamma_{r'})}{(E_{r}'-E_{r'}')^{2}+\frac{1}{4}(\Gamma_{r}+\Gamma_{r'})^{2}},$$

$$H_{r} = \sum_{r'=1,r'\neq r}^{\mathrm{NR}_{J}} \frac{\Gamma_{nr}\Gamma_{nr'}(E_{r}-E_{r'})}{(E_{r}'-E_{r'}')^{2}+\frac{1}{4}(\Gamma_{r}+\Gamma_{r'})^{2}}$$

Capture cross-section

Fission cross-section

$$\sigma_{n,\gamma}(E) = \sum_{l=0}^{\text{NLS}-1} \sigma_{n,\gamma}^{l}(E)$$

$$\sigma_{n,\gamma}^{l}(E) = \frac{\pi}{k^2} \sum_{J} g_J \sum_{r=1}^{\mathrm{NR}_J} \frac{\Gamma_{nr} \Gamma_{\gamma r}}{(E - E_r')^2 + \frac{1}{4}\Gamma_r^2}$$

$$\sigma_{n,f}(E) = \sum_{l=0}^{\mathrm{NLS}-1} \sigma_{n,f}^{l}(E) ,$$

$$\sigma_{n,f}^{l}(E) = \frac{\pi}{k^2} \sum_{J} g_{J} \sum_{r=1}^{\text{NR}_{J}} \frac{\Gamma_{nr} \Gamma_{fr}}{(E - E_{r}')^2 + \frac{1}{4} \Gamma_{r}^2}$$

25/07/16

Reconstruction: Reich-Moore

$$\sigma_T(E) = \frac{2\pi}{k^2} \sum_{l=0}^{\text{NLS}-1} \sum_{s=\left|I-\frac{1}{2}\right|}^{I+\frac{1}{2}} \sum_{J=\left|l-s\right|}^{l+s} g_J \text{Re}\left[1-U_{lsJ,lsJ}\right]$$
$$\sigma_{nn}(E) = \frac{2\pi}{k^2} \sum_{l=0}^{\text{NLS}-1} \sum_{s=\left|I-\frac{1}{2}\right|}^{I+\frac{1}{2}} \sum_{J=\left|l-s\right|}^{l+s} g_J \left|1-U_{lsJ,lsJ}\right|^2$$

Elastic cross-section

Fission cross-section

Capture cross-section = Absorption - fission

$$\sigma_{abs}(E) = \sigma_T(E) - \sigma_{nn}(E)$$

$$\sigma_f(E) = \frac{2\pi}{k^2} \sum_{l=0}^{\text{NLS}-1} \sum_{s=\left|I-\frac{1}{2}\right|}^{I+\frac{1}{2}} \sum_{J=\left|l-s\right|}^{l+s} g_J \left[\left| U_{nf1}^{lsJ} \right|^2 + \left| U_{nf2}^{lsJ} \right|^2 \right]$$
$$U_{nb}^J = e^{-i(\phi_n + \phi_b)} \left\{ 2 \left[(I-K)^{-1} \right]_{nb} - \delta_{nb} \right\},$$

$$(I - K)_{nb} = \delta_{nb} - \frac{i}{2} \sum_{r} \frac{\Gamma_{nr}^{1/2} \Gamma_{br}^{1/2}}{E_r - E - i \Gamma_{\gamma r}/2}$$

25/07/16

Reconstruction: Unresolved resonance

$$\sigma_{n,n}(E) = \sum_{l=0}^{\mathrm{NLS}-1} \sigma_{n,n}^{l}(E),$$

$$\sigma_{n,n}^{l}(E) = \frac{4\pi}{k^{2}} (2l+1) \sin^{2} \phi_{l}$$

$$+ \frac{2\pi^{2}}{k^{2}} \sum_{J}^{\mathrm{NJS}} \left[\frac{g_{J}}{\overline{D}_{l,J}} \left\langle \frac{\Gamma_{n}\Gamma_{n}}{\Gamma} \right\rangle_{l,J} - 2\overline{\Gamma}_{nl,J} \sin^{2} \phi_{l} \right]$$

Elastic cross-section

Average widths are used along with fluctuation

$$\left\langle \frac{\Gamma_n \Gamma_n}{\Gamma} \right\rangle_{l,J} = \left(\frac{\overline{\Gamma}_{nl,J} \overline{\Gamma}_{nl,J}}{\overline{\Gamma}_{l,J}} \right) R_{n,l,J}$$

Width fluctuation parameter R is calculated using MC²-II method.

Capture cross-section

$$\sigma_{n,\gamma}(E) = \sum_{l=0}^{\mathrm{NLS}-1} \sigma_{n,\gamma}^{l}(E),$$

$$\sigma_{n,\gamma}^{l}(E) = \frac{2\pi^{2}}{k^{2}} \sum_{J}^{\mathrm{NJS}} \frac{g_{J}}{\overline{D}_{l,J}} \left\langle \frac{\Gamma_{n}\Gamma_{\gamma}}{\Gamma} \right\rangle_{l,J}$$

Fission cross-section

$$\sigma_{n,f}(E) = \sum_{l=0}^{\text{NLS}-1} \sigma_{n,f}^{l}(E),$$

$$\sigma_{n,f}^{l}(E) = \frac{2\pi^{2}}{k^{2}} \sum_{J}^{\text{NJS}} \frac{g_{J}}{\overline{D}_{l,J}} \left\langle \frac{\Gamma_{n}\Gamma_{f}}{\Gamma} \right\rangle_{l,J}$$

25/07/16

Reconstruction: Resonance cross-section

This is done before simulation into offline mode but one can do during simulation and go for a Lunch break

Reconstruction: AI27 cross-section

Discontinuity at resolved and unresolved resonance boundary Loss of precession in NJOY data taken from NNDC site

0.05

0.01

Reconstruction: U235 cross-sections

Data are given up to 30 MeV

Resolved and un-resolved resonance boundary shows discrepancy due to discontinuity

RR data are agreeing within 0.5%

This is done before simulation into offline mode but one can do during simulation and go for a Day break

25/07/16

Reconstruction: U235 cross-sections

25/07/16

H. Kumawat, Group meeting, EP-SFT

Reconstruction: Nb93 cross-sections

Reconstruction: Doppler broadening

Energy, eV

Reconstruction: Angular Distributions

- Angular distributions are given in terms of Legendre coefficients and
 - probability tables
- ➢Data are given mostly
 - for few energies
- Cumulative distribution
 - and PDF are used to get

$$f(\mu, E) = \frac{2\pi}{\sigma_s(E)} \, \sigma(\mu, E) = \sum_{l=0}^{NL} \frac{2l+1}{2} \, a_l(E) \, P_l(\mu)$$

Legendre coefficients

$$E_i < E_{in} < E_{i+1}$$

$$E_{in} = E_i + r(E_{i+1} - E_i)$$

$$c_{l, k} < \xi_1 < c_{l, k+1}$$

$$\mu' = \mu_{l,k} + \left\{ \frac{\sqrt{P_{l,k}^2 + 2\left[\frac{p_{l,k+1} - p_{l,k}}{\mu_{l,k+1} - \mu_{l,k}}\right]}(\xi_1 - c_{l,k}) - p_{l,k}}{\left[\frac{p_{l,k+1} - p_{l,k}}{\mu_{l,k+1} - \mu_{l,k}}\right]} \right\}$$

the angle

The making of probability tables are done at initialization and we plan to shift to offline Otherwise one can have a chat

25/07/16

Reconstruction: Elastic Angular Distribution

Reconstruction: Energy Distributions

- Energy distributions are
 - given by tabular data or 5-
 - 6 different formulations
- ➢We make all formats into probability tables
- ➤Cumulative distribution
 - and PDF are used to get
 - the energy

One of the formulation for energy spectra

$$\begin{aligned} f(E \to E') &= \frac{1}{2} \left[g(E', E_F(L)) + g(E', E_F(H)) \right] \\ g(E', E_F) &= \frac{1}{3\sqrt{(E_F T_M)}} \left[u_2^{3/2} \mathcal{E}_1(u_2) - u_1^{3/2} \mathcal{E}_1(u_1) + \gamma \left(\frac{3}{2}, u_2\right) - \gamma \left(\frac{3}{2}, u_1\right) \right] \\ u_1 &= \left(\sqrt{E'} - \sqrt{E_F} \right)^2 / T_M \\ u_2 &= \left(\sqrt{E'} + \sqrt{E_F} \right)^2 / T_M \end{aligned}$$

- $E_F(X)$ are constant, which represent the average kinetic energy per nucleon of the fission fragment; arguments L and H refer to the average light fragment (given by the parameter EFL in the file) and the average heavy fragment (given by the parameter EFH in the file), respectively.
 - $T_{\cal M}$ $\,$ parameter tabulated as a function of incident neutron energy,
- $E_1(x)$ is the exponential integral,
- $\gamma(a, x)$ is the incomplete gamma function. The integral of this spectrum between zero and infinity is one. The value of the integral for a finite integration

Probability tables are made at initialization and we plan to shift to offline Otherwise one can have one more chat

Reconstruction and sampling

Sampling: Elastic Angular Distribution

➢Data are given mostly

for few energies

- ➢Bilinear interpolation
- ➢Isotropic behavior for

keV neutrons and

forward peaking at

higher energies

➤1 Million events are simulated

25/07/16

Sampling: Energy Distribution

In case of Fission second or third or higher number of neutrons are sampled from the same distribution

Second neutron from n,2n reaction can have Total - 1st neutron energy – recoil energy

Energy conservation exist but without correlation until such data are given

Sampling: PU-241 Fission neutrons

Sampling: PU-241 Delayed Fission neutrons

Delayed neutrons emitted by 6 precursor families. Mean time of decay is up to 100 seconds.

Sampling: PU-241 Fission fragments

Data are given mostly for 2-3 energies (0.0253 eV, 0.5MeV, 14MeV).
 Interpolate for intermediate intervals.

25/07/16

H. Kumawat, Group meeting, EP-SFT

Summary

- Neutron cross-sections are reconstructed and agreement with NJOY data is good.
- Angle and energy distributions are well described.
- Fission fragments and fission neutron multiplicity are validated.
- Doppler broadening at various temperature is too many sets of data points (every 50Kelvin)
- One should make effort to parameterize the data for temperature dependence and use them for given temperature (300k-3000K).

Future work

- Transport and Validation for the multiplicity, distributions
- Validation of photon distributions
- Include thermal scattering data
- Atomic relaxation data
- Optimize sampling technique
- Include variance reduction techniques
- Optimize for vectorized architecture

धन्यवाद

Thank you for your attention!

25/07/16

39