CERN Retreat: String Theory Group Presentations

Benjamin Assel (Sincere apologies for not being present today)

I have done my PhD in Ecole Normale Supérieure in Paris and then I have been a postdoc for three years at King's College in London.

My main fields of interest so far have been **supersymmetric** and **super-conformal gauge theories** in dimensions one to six and the **holographic correspondence** (AdS/CFT).

More specifically I have been studying:

- Supersymmetry in curved spaces (without gravity) and localization computations, e.g. exact computation of the partition function of 4d N = 1 supersymmetric gauge theories on S¹ × S³;
- The holographic correspondence between 3d N = 4 super-conformal theories and their AdS₄ gravity duals in type IIB string theory;
- Non-perturbative dualities in gauge theories, e.g. mirror symmetry in 3d N = 4 theories, electro-magnetic duality in 4d N = 4 SYM.
- Defects preserving supersymmetry: Supersymmetric Wilson loops, surface defects, ...

Supersymmetric localization across dimensions

Cyril Closset

CERN

CERN-TH retreat November 3, 2016

Ten years in a slide:

- 2006-2010: PhD at ULB (Belgium)
- 2010: Weizmann
 Institute (Israel)
- 2013: Simons Center (NY, USA)
- ◊ 2016: CERN
- What I did: AdS/CFT, brane physics, exact results in SUSY QFT

Cvril N. M. Closset Personal Cyril N. M. Closset. Name : Birth-late : August 13, 1983 Nationality : Belgian Mail : CERN dep TH 1211 Geneve 23 Switzerland. Academic positions 2016-2019 CERN-COFUND Fellow at the CERN Theoretical Physics Department, Geneva, Switzerland, 2013-2016 Research Assistant Professor at the Simons Center for Geometry and Physics, State University of New York at Stony Brook, Stony Brook, NY, USA. 2010-2013 Postdoctoral Feinberg Fellow at the Weizmann Institute of Science (Department of Particle Physics and Astronomy), Rehovot, Israel. Education Doctoral studies at Université Libre de Bruxelles (ULB), Brus-2006-2010 sels, Belgium. Scholarship FRIA-FNRS. Thesis defended on June 11, 2010. Thesis advisor: Dr Riccardo Argurio, Thesis title: *Studies of fractional D-branes in the gauge/gravity correspondence & Flavored Chern-Simona quivers for M2-branes." 2004-2006 Licence en Physique (Physics master degree) at ULB. 2004-2005 Exchange student (Erasmus program) at the Universidad Complutense de Madrid (UCM), Madrid, Spain. Candidatare en Physique (Physics bachelor degree) at ULB. 2002-2004

Main research interests

Exact results in supersymmetric QFT. Curved space supersymmetry. Supersymmetric GLSM in two dimensions. Field theory dualities. Conformal field theories. Chern-Simons theory. AdS/CFT correspondence. D-branes and M-branes in string/M-theory.

My current obsession:

- Take a supersymmetric theory in *d* dimensions.
 Don't throw in too many supercharges. (To taste.)
- ◇ Place it on a curved manifold M_d (preserve SUSY).
- Perform the path integral using supersymmetric localization.

It leads to many exact results for 'supersymmetric enough' observables.

This is particularly interesting for superconformal theories.

Two-dimensional field theories with $\mathcal{N} = (2, 2)$ supersymmetry can be 'twisted' and placed on curved space.

Topological field theories 'of cohomological type'. [Witten, 1988]

Two-dimensional field theories with $\mathcal{N} = (2, 2)$ supersymmetry can be 'twisted' and placed on curved space.

Topological field theories 'of cohomological type'. [Witten, 1988]

Two-dimensional field theories with $\mathcal{N} = (2, 2)$ supersymmetry can be 'twisted' and placed on curved space.

Topological field theories 'of cohomological type'. [Witten, 1988]

Recent progress in computing correlation function of 'Coulomb branch operators' for any standard $\mathcal{N} = (2, 2)$ gauge theory.

[C.C., Cremonesi, Park, 2015; C.C., Kim, 2016]

$$\langle \mathcal{O}(\sigma) \rangle_{\Sigma_g} = \sum_{\mathfrak{m} \in \Gamma_{\mathbf{G}^{\vee}}} q^{\mathfrak{m}} \oint_{\mathrm{JK}(\eta)} \frac{d\sigma}{2\pi i} \, Z_{g,\mathfrak{m}}^{1-\mathrm{loop}}(\sigma) \, H(\sigma)^g \, \mathcal{O}(\sigma)$$

◇ Mathematically, it computes 'quasimap invariants'.

[Kim, Oh, Ueda, Yoshida, 2016]

- ◊ Leads to new results for CY manifolds.
- More observables are captured by the A-twist, which have not yet been computed. It will be very interesting to compute the most general A-twist (twisted chiral ring) correlator.

The A-twist in three dimensions

We recently computed the quantum algebra of Wilson loops in very large classes of three-dimensional gauge theories with $\mathcal{N}=2$ supersymmetry. [C.C., Kim, 2016]

It generalizes the Verlinde algebra of pure Chern-Simons theory.

Like for pure Chern-Simons, there is a beautiful topological story and a direct relation to two-dimensional physics.

The A-twist in three dimensions

The quasi-topological structure of 3d $\mathcal{N} = 2$ gauge theories can be uncovered by explicit localization computations. For instance, we find: [C.C., Kim, Willett, to appear]

$$Z_{S^3} = \left\langle \mathcal{F}^p \right\rangle_{S^2 \times S^1}$$

with Z_{S^3} the S^3 partition function of [Kapustin, Willett, Yaakov, 2009]

- There are more TFT-like structure to explore in these theories.
- ◇ It gives powerful tool to study 3d dualities.
- It might shed new light on the 3d/3d correspondence of [Dimofte, Gaiotto, Gukov, 2011].

Current projects

In 4d $\mathcal{N} = 1$ theories:

- ◇ Study half-BPS surface operators and their fusion algebra.
- Study quarter-BPS local operators by localization on complex manifolds.

In 2d $\mathcal{N} = (0, 2)$ theories:

- $\diamond~$ Study the chiral algebra of half-BPS local operators in 2d $\mathcal{N}=(0,2)$ theories.
- ♦ Study $\mathcal{N} = (0, 2)$ quivers that arise on CY fourfold singularities using B-branes.

Research Interests & Scientific Activities

Denis Klevers

CERN Theory Group Retreat 2016 St. Genis

3th of November 2016

My background & research interests in short

Background:

- PhD in 2011 from universität
- Postdoc 2011-2014 at
- Fellow at CERN since September 2014.
 <u>Future:</u>
- January 2017: MPI Munich

Research field:

String Phenomenology broadly defined.

- Development of techniques to determine effective physics of String Theory.
- Work at interface between physics/mathematics.

The effective physics of string theory

UV theory

String Theory in 10/11 dimensions

Compactification + Low energies Effective theories in 4 (6) dimensions

IR theories

Goal: obtain all data of effective theories from data of UV theory

* Focus of my talk: Classify particle physics in String Theory/F-theory.

* Successful alternative application: strongly coupled gauge theories in 6D

Problems:

- 1. Many vacua of string theory.
- 2. realistic solutions very complex.

F-theory: Formulation of String Theory that constructs largest class of string vacua with promising particle physics & provides powerful tool in mathematics.

F-Theory: Physics from geometry

<u>My research</u>: geometric techniques for physics/geometry dictionary

F-theory: Physics at geometrical singularities

F-theory = Duality + Geometrisation in Type IIB String Theory.

* Type IIB has S-duality acting on complexified string coupling $\tau = ig_S^{-1} + C_0$ as

Dehn-twist

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}$$
 with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z})$

* Natural object to consider is not τ but two-torus $T^2(\tau)$ associated to it.

S-duality invariant description requires replacing τ by geometry $T^2(\tau)$

F-theory: Physics at geometrical singularities

Important: $\tau = ig_{S}^{-1} + C_{0}$ has sources in String Theory = 7- branes

Varying field profile of au

 \longrightarrow $T^{2}(\tau)$ varies over space-time.

* at sources: $| au| o \infty$

X defines higher-dim. manifold: Calabi-Yau manifold

7-branes replaced by singularities in geometry *X*

* 7-branes carry physical theories: Constructing models of particle physics

Classification of particle physics

Goal: Use F-theory to

Directly construct semi-realistic theories of particle physics.

Application: construction of MSSM, Pati-Salam & trinification models

M.Cvetic, D.K., D.Mayorga-Pena, P.Oehlmann, J.Reuter arXiv:1503.02068

Classify what physics is geometrically/mathematically allowed.

 Allowed Abelian sector (#(U(1), charges)
 M.Cvetic, A.Grassi, D.K., H.Piragua, P.Song: arXiv:1303.6970, arXiv: 1306.3987, arXiv:1307.6425, arXiv:1310.0463, M.Cvetic, D.K., H.Piragua, W. Taylor arXiv:1507.05954.

- Allowed discrete groups (Z_n groups)
 D.K., D.Mayorga-Pena, P.Oehlmann, J.Reuter, H.Piragua arXiv:1408.4808
 M.Cvetic, R.Donagi, D.K., H.Piragua, M.Poretschkin arXiv1502.06953
- Exotic matter representations

D.K., W. Taylor: arXiv:1604.01030; D.K., D.Morrison, N. Raghuram, W. Taylor: in progress Rational points on elliptic curves.

Number theory

Tate-Shafarevich group.

Summary and Outlook

1. Geometry/Physics:

- * Classify physics of effective theories of String Theory using F-theory.
- * Construct wide class of vacua of String Theory in one framework.
- Rich reciprocal interplay between physics/math:

Physical questions

New geometrical structure

2. Conceptual questions:

- Defining data of F-theory: CY X, G₄-flux, Hitchin system on discriminant locus of Calabi-Yau X, T-branes/gluing branes, matrix factorization, generalization of categories...?
- * Microscopics of F-theory: D3-branes, M2-branes, (p,q)-webs...?

Daniel Krefl

based on

0: arXiv: 1105.0630 (with Aganagic, Cheng, Dijkgraaf & Vafa)

I: arXiv: 1311.0584

II: arXiv: 1410.7116

III: arXiv: 1605.00182

Classical geometry:

 $\Sigma: f(x,p) = 0$

D. Krefl @ CERN '16

Classical geometry:

 $\Sigma:f(x,p)=0$

Algebraic curve (not necessarily polynomial)

Classical geometry:

 $\Sigma: f(x,p) = 0$

 $\in \mathbb{C}^2$ or $(\mathbb{C}^*)^2$

May depend on auxiliary parameters z_i

Algebraic curve (not necessarily polynomial)

Classical geometry:

D. Krefl @ CERN '16

Classical geometry:

(meromorphic) 1-form

Classical geometry:

 $\Sigma: f(x,p) = 0$ \mathcal{M} $\mathcal{F}_0(z)$ "Geometrification" of physics Prime example: 3 Seiberg-Witten solution of $\mathcal{N}=2$ supersymmetric gauge theories in 4d $\Pi(z) = \oint d\lambda$

Prepotential (free energy)

D. Krefl @ CERN '16

Classical geometry:

 $\sum_{\mathbf{l}} : f(x, p) = 0$

"Geometrification" of physics

Conceptually identical for:

Topological strings on toric Calabi-Yaus

 \mathcal{M}

💥 Matrix Models

Quantum Geometry:

 $\Sigma: f(x,p) = 0$

Perform canonical quantization, i.e., $[x,p]=i|\hbar|e^{i heta}\in\mathbb{C}$

Quantum Geometry:

 $\Sigma: f(x,p) = 0$

Perform canonical quantization, i.e., $[x,p]=i|\hbar|e^{i heta}\in\mathbb{C}$ (with right ordering prescription as for quantum integrable systems)

 $\Sigma \to \widehat{\Sigma}$ $\widehat{\Sigma} : \widehat{f} \Psi(x) = 0$ General solution: $\Psi(x) = \sum_{i} c_{i} \Psi^{(i)}(x)$

D. Krefl @ CERN '16

Quantum Geometry:

 $\widehat{\Sigma}:\widehat{f}\Psi(x)=0$

Remark: In general this is *not* just ordinary quantum mechanics ☆ Can be differential or <u>difference</u> operator of higher order ☆ Lives intrinsically in the <u>complex</u> domain

Quantum Geometry:

 $\widehat{\Sigma} : \widehat{f} \Psi(x) = 0$

Key observation:

The wave-function defines a quantum differential:

 $dS \sim \partial_x \log \Psi$ Note: A priori no unique differential Quantum periods $\Pi = \oint dS$ "Quantum" free energy

D. Krefl @ CERN '16

Quantum Geometry:

 $\widehat{\Sigma}:\widehat{f}\Psi(x)=0$

Key observation:

Astonishingly, the so constructed quantum free energies have (perturbative) physical realisations [see our `11 work]

The wave-function defines a quantum differential:

 $dS \sim \partial_x \log \Psi$ Note: A priori no unique differential Quantum periods $\Pi = \oint dS$ "Quantum" free energy

D. Krefl @ CERN '16

Quantum Geometry:

 $\widehat{\Sigma}:\widehat{f}\Psi(x)=0$

Astonishingly, the so constructed quantum free energies have (perturbative) physical realisations [see our `11 work]

Key point:

This definition of quantum differential, and so free energy, is intrinsically *non-perturbative* !

Yields a non-perturbative definition (or completion) to physical partition functions

Quantum Geometry:

 $\widehat{\Sigma}:\widehat{f}\Psi(x)=0$

Astonishingly, the so constructed quantum free energies have (perturbative) physical realisations [see our `11 work]

Key point:

This definition of quantum differential, and so free energy, is intrinsically *non-perturbative* !

Yields a non-perturbative definition (or completion) to physical partition functions

Quantum Geometry:

Key point:

This definition of quantum differential, and so free energy, is intrinsically *non-perturbative* !

<u>Caveat:</u>

Need to understand the <u>exact</u> solutions of generalized quantum mechanical systems

Quantum Geometry:

Key point:

This definition of quantum differential, and so free energy, is intrinsically *non-perturbative* !

<u>Caveat:</u>

Need to understand the <u>exact</u> solutions of generalized quantum mechanical systems

One of the main topics of my more recent and current research projects !

Quantum Geometry:

Key point:

This definition of quantum differential, and so free energy, is intrinsically *non-perturbative* !

<u>Caveat:</u>

Need to understand the <u>exact</u> solutions of generalized quantum mechanical systems

One of the main topics of my more recent and current research projects !

Quantum Geometry:

 $\widehat{\Sigma}:\widehat{f}\Psi(x)=0$

Example to illustrate the subtleties one may encounter:

$$p^2 + \omega^2 x^2 = E$$

$$\implies \hat{f}: \frac{\partial^2}{\partial x^2} - \kappa^2 x^2 + \frac{E}{\hbar^2}$$

... Thank you ...

Quantum Geometry of Strings & Branes

WL/TH Retreat 2016

Physics motivation: string compactifications to 4d Typical brane + flux configuration on a Calabi-Yau space X:

closed string (bulk) moduli t

open string (brane location + bundle) moduli u

3+1 dim world volume with effective N=1 SUSY theory What are the **exact** effective superpotential, the vacuum states, gauge couplings (general F-terms), etc, as functions of moduli ?

$\mathcal{W}_{ ext{eff}}(\Phi,t,u) \; = ?$

....well developed geometrical techniques mostly for non-generic brane configurations (non-compact, -intersecting) branes only ! (mirror symmetry, localization, integrable matrix models...)

Open-String Amplitudes and D-branes

Generic amplitudes are highly non-trivial, esp. for intersecting branes (quivers)

$$\begin{split} \mathcal{W}_{eff}(T,u,t) &= T_a T_b T_c \underbrace{\langle \Psi_a^{(A,B)} \Psi_b^{(B,C)} \Psi_c^{(C,A)} \rangle}_{C_{abc}(t,u)} + T_a T_b T_c T_d \underbrace{\langle \Psi_a^{(A,B)} \Psi_b^{(B,C)} \Psi_c^{(C,D)} \Psi_d^{(D,A)} \rangle}_{C_{abcd}(t,u)} + \dots \end{split} \\ \\ \text{Disk correlator counts polygonal instantons,} \\ \text{weighted by area} \\ C_{abc} \sim e^{-S_{\text{inst}}} \sim q^{\Delta_{abc}} + \dots \end{split}$$

There is an **infinitely** richer diversity of world-sheet instantons, and "Gromov-Witten" invariants, as compared to closed string

However, almost nothing of that sort has ever been computed!

D-branes: Homological Mirror Symmetry

Math. framework: HMS (Kontsevich): map complicated problem (A-model, Fukaya category) to simpler one (B-model, category of coh. sheaves)

Phys. framework: B-model = boundary LG model based on matrix factorizations $Q(x) \cdot Q(x) = W_{LG}(x) 1$ generates infinitely many new GW invariants

Ricardo Monteiro

Area: QFT and Strings

CERN Theory retreat November 3, 2016

▲□▶▲□▶▲□▶▲□▶ □ クタぐ

Career

Education

- 2005 Degree in IST, Lisbon
- 2010 Master and PhD in DAMTP, Cambridge

Employment

• 2010-13 – Niels Bohr Institute, Copenhagen

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ●

- 2013-15 Mathematical Institute, Oxford
- 2015 CERN

Current work

Scattering amplitudes of gauge theory and gravity.

▲□▶▲□▶▲□▶▲□▶ = のQ@

Motivation

- Perturbative gravity, UV behaviour?
- Gravity versus gauge theory?
- Feynman diagrams hard. New formulations of QFT?

Gravity $\sim YM^2$

[with O'Connell, White, ...]

Free fields

• polarisations: $\epsilon_{\mu} \ \tilde{\epsilon}_{\nu} = \varepsilon_{\mu\nu}$ (graviton + dilaton + B-field)

Amplitudes

- Einstein-Hilbert action: infinite number of horrible vertices!
- o double copy

$$\mathcal{A}_{\text{grav}}(\varepsilon_{i}^{\mu\nu}) \sim \mathcal{A}_{\text{YM}}(\epsilon_{i}^{\mu}) \times \mathcal{A}_{\text{YM}}(\tilde{\epsilon}_{i}^{\mu}) \Big|_{\text{colour stripped}}$$

most efficient using the colour-kinematics duality

[Bern, Carrasco, Johansson]

Q: Kinematic algebra? Loop level?

Classical solutions

- Q: Extends to exact solutions? Yes!
- E.g. Schwarzschild \sim (Coulomb)²,

General map? Applications?

Taub-NUT
$$\sim (dyon)^2$$

Worldsheet models of QFTs

Scattering equations

$$\sum_{j\neq i} \frac{\mathbf{k}_i \cdot \mathbf{k}_j}{\sigma_i - \sigma_j} = \mathbf{0}, \quad \forall i$$

solutions $\{\sigma_i\}$

[with Geyer, Mason, Tourkine, ...]

[Cachazo, He, Yuan]

 $\begin{array}{c}
 1 \cdot 4 \\
 \cdot^2 \cdot 3
 \end{array}$

Amplitudes are worldsheet correlators of ambitwistor string theories [Mason, Skinner] (upgrade on Witten's twistor string theory)

Map: kinematic invariants (massless) \rightarrow points σ_i on S^2 New formulas $\mathcal{A} = \int d\mu \, \mathcal{I}(\sigma_i) = \sum_{i=1}^{n} A(\sigma_i)$

Q: Loop level? Progress up to two loops! **Q:** Other observables, e.g. correlators? Wednesday seminar next week!

- Staff since June 2011, on leave from CNRS, LPTHE, Paris
- Formal / mathematical aspects of string theory
 - Higher loop amplitudes in string theory
 - String dualities, instanton calculus
 - Black hole precision counting, wall-crossing...
 - Math applications: automorphic forms, algebraic geometry...
- Co-organizer of the Tuesday String Seminar
- Co-organizer of the CERN Winter School on Strings and Fields since 2012, mark the next edition: 6-10 Feb 2017 !

Slava Rychkov

Whereabouts:

- ENS Paris Oct 2016-Mar 2017 & Oct 2017-Mar 2018
- CERN in between and after

Research programs:

- Quantum Field Theory at Strong Coupling (Hamiltonian truncation)
- Conformal Field Theory in D≥3 (Conformal bootstrap)

Member of Simons Collaboration on Non-perturbative bootstrap (funded 2016)

Current Research activities

Marine Samsonyan

03 November 2016

- 2007–2011 Ph.D. on "Non-perturbative aspects of gauge and string theories and their holographic relations " at University of Rome "Tor Vergata".
- 2014–2017 Post Career Break Fellow at CERN

$\mathcal{N}=2$ mass and Ω deformed theories

With C. Angelantonj and I. Antoniadis

$$\mathcal{N} = 4 \xleftarrow[m \to 0]{} \mathcal{N} = 2^* \xrightarrow[m \to \infty]{} \mathcal{N} = 2$$

The 4D and 5D theories with massive adjoint hypermultiplet are UV complete. For U(1) the instanton partition function has a compact form.

$$\mathcal{F} = \mathcal{F}_{class} + \mathcal{F}_{1-loop} + \mathcal{F}_{inst}$$

We constructed

4D and 5D U(1) N = 2* by placing a single D5-brane on M_{1,3} × S¹_m × S¹_R × C²/Z_N
4D and 5D U(1) N = 2*, ε₁ = -ε₂ = ħ A_g = ⟨(V⁺_{grav})² (V⁻_{grav})² V^{2g-2}_{gph}⟩
4D and 5D U(1) N = 2* for general ε₁ and ε₂ A_{g,n} = ⟨(V⁺_{grav})² (V⁻_{grav})² V^{2g-2}_{gph} V^{2g}₊⟩

Next:

• Instantons

Construct in string theory, compute the amplitudes and take the field theory limit

• $\mathcal{N}=2$ with hypermultiplets in other representations

Supercurrents in Supergravity

With S. Ferrara and A. van Proeyen

Understanding the Supercurrents multiplet in the presence of gravity. We derived

• Simplified expression for the supercurrent and its conservation in curved $\mathcal{N} = 1$, D = 4 superspace using the superconformal approach.

$$\bar{\mathcal{D}}^{\dot{\alpha}}E_{\alpha\dot{\alpha}} = -\bar{\mathcal{D}}^{\dot{\alpha}}\mathcal{J}_{\alpha\dot{\alpha}} = X_0^3\mathcal{D}_{\alpha}R'$$
with $R' = \frac{1}{X_0^2}\bar{D}^2\bar{X}_0 = W - \frac{1}{3}SW_S - \frac{1}{3}\bar{D}^2\left(\frac{\Delta K}{X_0^2}\bar{X}_0\right)$

• The trace of (super)Einstein equation and the coupling to conformal matter is presented

 $E_{\alpha\dot{\alpha}} = -2(D_{\alpha}X_0)(\bar{D}_{\dot{\alpha}}\bar{X}_0) + 4iX_0\overleftrightarrow{\partial}_{\alpha\dot{\alpha}}\bar{X}_0$ and

$$\begin{aligned} \mathcal{J}_{\alpha\dot{\alpha}} &= \\ -E_{\alpha\dot{\alpha}} + 2N_{I\bar{J}}D_{\alpha}X^{I}\bar{D}_{\dot{\alpha}}\bar{X}^{\bar{J}} + 4i\left(N_{I}\partial_{\alpha\dot{\alpha}}X^{I} - N_{\bar{I}}\partial_{\alpha\dot{\alpha}}\bar{X}^{\bar{I}}\right) \\ \text{for the Lagrangian} \quad \mathcal{L} = N(X,\bar{X})_{D} + WX_{0}^{3}|_{F} \end{aligned}$$

Next:

- Separate the supergravity multiplet from the matter in the case of non-conformal matter
- Applications to early time cosmology

Thank you

Andreas Stergiou

2013: PhD at UC San Diego2013–2016: Yale UniversityNow: New fellow at CERN

Interests:

- RG flows and CFTs
- Supersymmetry
- Strong coupling physics

Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών

Critical Phenomena

Critical Phenomena

Approach to critical points displays universality!

A theory describing gases and a theory describing magnets have the same critical exponents, for example

CompressibilityMagnetic susceptibility $\kappa \sim (T - T_c)^{-\gamma}$ $\chi \sim (T - T_c)^{-\gamma}$ $\gamma \approx 1.2$

This is a reflection of the fact that at critical points only the most essential effects of interactions survive.
CFTs

CFTs are ubiquitous in high-energy and condensed matter physics.

They are important in the context of the AdS/CFT correspondence.

How do we study CFTs?

One way is to view CFTs as endpoints of renormalization group flows.

Conformal Bootstrap

The conformal bootstrap method was first proposed by Polyakov in 1974 as a way to "solve" CFTs.

The first successful numerical implementation of the method appeared in 2008. (Rattazzi, Rychkov, Tonni & Vichi)

The numerical conformal bootstrap:

- Gives constraints on the operator spectrum and interaction strength of CFTs.
- Is non-perturbative.
- Is not specific to any theory (does not need a Lagrangian).
- · Can be used in any spacetime dimension.
- Uses the power of conformal symmetry.
- Has errors that are under control.

(Poland, Simmons-Duffin & Vichi, 2011) (Poland & AS, 2015)

Other Research Interests

CFTs in higher spacetime dimensions.

Aspects of supersymmetric and superconformal theories.

AdS/CFT, black holes, and the information paradox.

Other Research Interests

CFTs in higher spacetime dimensions.

Aspects of supersymmetric and superconformal theories.

AdS/CFT, black holes, and the information paradox.

Thank you!