Jacobo López-Pavón

CERN TH Retreat

CERN, 3-4 November 2016

Research Interests

• Origin of neutrino masses still unknown!

● **BSM and Neutrino Physics**

• Neutrino Theory and Phenomenology **mass mechanisms, seesaws, neutrino oscillations, neutrinoless double beta decay, colliders, LFV processes, EW precision tests…**

● **Particle Physics and Cosmology interplay leptogenesis, early universe…**

Minimal Model: Seesaw Model

We will focus on the simplest extension of SM able to account for neutrino masses:

$$
\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \mathcal{L}_{\mathcal{K}} - \frac{1}{2} \overline{N_i} M_{ij} N_j - Y_{i\alpha} \overline{N_i} \widetilde{\phi}^{\dagger} L_{\alpha} + h.c.
$$

Heavy fermion singlet: N_R Type I seesaw. Minkowski 77; Gell-Mann, Ramond, Slansky 79; Yanagida 79; Mohapatra, Senjanovic 80.

Minimal Model: Seesaw Model

We will focus on the simplest extension of SM able to account for neutrino masses:

 $\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \mathcal{L}_{\mathcal{K}} - \frac{1}{2} \overline{N_i} M_{ij} N_j - Y_{i\alpha} \overline{N_i} \widetilde{\phi}^{\dagger} L_{\alpha} + h.c.$
New Physics Scale $(m_{\nu} \sim Y^2 v^2/M)$

Heavy fermion singlet: N_R Type I seesaw. Minkowski 77; Gell-Mann, Ramond, Slansky 79; Yanagida 79; Mohapatra, Senjanovic 80.

Bulbul et al.(arXiv:1402.2301) Boyarsky et al.(arXiv:1402.4119)

- **Leptogenesis via Oscillations M=0.1-100GeV** Akhmedov, Rubakov, Smirnov (ARS); Asaka, Shaposnikov (AS)
- Resonant Leptogenesis M>100GeV **Pilaftsis**

Leptogenesis in Minimal Model NR=2

What if the sterile u are within reach of ShiP?

Can we predict Y_B from the experiments?

Summary and Conclusions

- I am particularly interested in BSM extensions which can account for the origin of neutrino masses and their phenomenological implications.
- I study different aspects of the neutrino phenomenology: neutrino oscillations, neutrinoless double beta decay, LFV, leptogenesis, colliders, EW precission data, early universe…
- The combination of all this information will shed light on the origin and nature of neutrino masses.
- For instance, we have recently found that the simplest model of neutrino masses able to explain the baryon asymmetry with an O(GeV) new physics scale is indeed testable!

Thanks!

Leptogenesis in Minimal Model NR=2

Inverted light neutrino ordering

Hernandez, Kekic, JLP, Racker, Salvadò 2016 arXiv:1606.06719

Kinematic Equations

We have solved the equations for the density matrix in the Raffelt-Sigl formalism

$$
\frac{d\rho_N(k)}{dt} = -i[H, \rho_N(k)] - \frac{1}{2}\left\{\Gamma_N^a, \rho_N\right\} + \frac{1}{2}\left\{\Gamma_N^p, 1 - \rho_N\right\}
$$

- Fermi-Dirac or Bose-Einstein statistics is kept throughout
- Collision terms include $2 \leftrightarrow 2$ scatterings at tree level with top quarks and gauge bosons, as well as $1 \leftrightarrow 2$ scatterings, including the resummation of scatterings mediated by soft gauge bosons
- Leptonic chemical potentials are kept in all collision terms to linear order
- Include spectator processes

Kinematic Equations

We have solved the equations for the density matrix in the Raffelt-Sigl formalism using the code SQuIDS

Arguelles Delgado, Salvado, Weaver 2015 https://github.com/jsalvado/SQuIDS

$$
xH_u \frac{dr_+}{dx} = -i[\langle H_{\rm re} \rangle, r_+] + [\langle H_{\rm im} \rangle, r_-] - \frac{\langle \gamma_N^{(0)} \rangle}{2} \{ \text{Re}[Y^{\dagger}Y], r_+ - 1 \}
$$

\n
$$
+i\langle \gamma_N^{(1)} \rangle \text{Im}[Y^{\dagger} \mu Y] - i\frac{\langle \gamma_N^{(2)} \rangle}{2} \{ \text{Im}[Y^{\dagger} \mu Y], r_+ \} - i\frac{\langle \gamma_N^{(0)} \rangle}{2} \{ \text{Im}[Y^{\dagger}Y], r_- \},
$$

\n
$$
xH_u \frac{dr_-}{dx} = -i[\langle H_{\rm re} \rangle, r_-] + [\langle H_{\rm im} \rangle, r_+] - \frac{\langle \gamma_N^{(0)} \rangle}{2} \{ \text{Re}[Y^{\dagger}Y], r_- \}
$$

\n
$$
+ \langle \gamma_N^{(1)} \rangle \text{Re}[Y^{\dagger} \mu Y] - \frac{\langle \gamma_N^{(2)} \rangle}{2} \{ \text{Re}[Y^{\dagger} \mu Y], r_+ \} - i\frac{\langle \gamma_N^{(0)} \rangle}{2} \{ \text{Im}[Y^{\dagger}Y], r_+ - 1 \},
$$

\n
$$
\frac{d\mu_{B/3 - L_{\alpha}}}{dx} = \frac{\int_k \rho_F}{\int_k \rho_F'} \{ \langle \gamma_N^{(0)} \rangle \text{Tr}[r_- \text{Re}(Y^{\dagger} I_{\alpha} Y) + ir_+ \text{Im}(Y^{\dagger} I_{\alpha} Y)]
$$

\n
$$
+ \mu_{\alpha} \left(\langle \gamma_N^{(2)} \rangle \text{Tr}[r_+ \text{Re}(Y^{\dagger} I_{\alpha} Y)] - \langle \gamma_N^{(1)} \rangle \text{Tr}[Y Y^{\dagger} I_{\alpha}] \right) \},
$$

\n
$$
\mu_{\alpha} = -\sum_{\beta} C_{\alpha\beta} \mu_{B/3 - L_{\beta}},
$$

• Baryon asymmetry for IH and in the weak wash out regime:
 $[Y_{B}]_{LH} \propto (e^{4\gamma} \frac{(\Delta m_{atm}^2)^{3/2}}{4v^6} M_1 M_2 (M_1 + M_2)$
 $\left[(\sin(2\theta \cos 2\theta_{12} - \cos \phi_1 \cos 2\theta \sin 2\theta_{12}) (\sin^2 2\theta_{23} + (4 + \cos 4\theta_{23}) \sin \phi_1 \sin 2\theta_{12}) + \mathcal{O}(\epsilon) \right]$

• Baryon asymmetry depends on all the unknown \bm{p} arameters (also on δ at $\mathcal{O}\left(\epsilon\right)$)

• Baryon asymmetry strongly depends on all the **unknown parameters**

• **SHIP** can measure (if sterile states not too degenerate)

 $M_1, M_2, |U_{e4}|, |U_{e5}|, |U_{u4}|, |U_{u5}|$

• **SHIP** can measure (if sterile states not too degenerate):

 $M_1, M_2, |U_{e4}|, |U_{e5}|, |U_{\mu 4}|, |U_{\mu 5}|$ **SHIP sensitive to PMNS CP-phases!**• $|U_{e4}|^2/|U_{\mu 4}|^2 \simeq |U_{e5}|^2/|U_{\mu 5}|^2 \simeq$ δ, ϕ_1 $\frac{(1 + s_{\phi_1} \sin2\theta_{12})(1-\theta_{13}^2) + \frac{1}{2}r^2 s_{12}(c_{12} s_{\phi_1} + s_{12})}{\left(1 - \sin2\theta_{12} s_{\phi_1} \left(1 + \frac{r^2}{4}\right) + \frac{r^2 c_{12}^2}{2}\right) c_{23}^2 + \theta_{13}(c_{\phi_1} s_{\delta} - \cos2\theta_{12} s_{\phi_1} c_{\delta}) \sin2\theta_{23} + \theta_{13}^2 (1 + \sin2\theta_{12}) s_{23}^2 s_{\phi_1}}$

SHIP sensitive to PMNS CP phases

Recall, neutrino oscillation experiments sensitive to δ

• **SHIP** can measure (if sterile states not too degenerate):

 $M_1, M_2, |U_{e4}|, |U_{e5}|, |U_{\mu 4}|, |U_{\mu 5}|$ **SHIP sensitive to PMNS CP-phases!**• $|U_{e4}|^2/|U_{\mu 4}|^2 \simeq |U_{e5}|^2/|U_{\mu 5}|^2 \simeq$ δ, ϕ_1 $\frac{(1 + s_{\phi_1} \sin2\theta_{12})(1-\theta_{13}^2) + \frac{1}{2} r^2 s_{12}(c_{12} s_{\phi_1} + s_{12})}{\left(1 - \sin2\theta_{12} s_{\phi_1} \left(1 + \frac{r^2}{4}\right) + \frac{r^2 c_{12}^2}{2}\right) c_{23}^2 + \theta_{13}(c_{\phi_1} s_{\delta} - \cos2\theta_{12} s_{\phi_1} c_{\delta}) \sin2\theta_{23} + \theta_{13}^2 (1 + \sin2\theta_{12}) s_{23}^2 s_{\phi_1}}$

 \bullet $|U_{e4}|^2, |U_{\mu 4}|^2, |U_{e5}|^2, |U_{\mu 5}|^2 \propto \sqrt{2\gamma}$

• Neutrinoless double beta decay effective mass in the IH case

• Heavy neutrino contribution can be sizable for $M\sim O\left(GeV\right)$ Mitra, Senjanovic, Vissani 2011 JLP, Pascoli, Wong 2012

Hernandez, Kekic, JLP, Racker, Salvadò 2016 arXiv:1606.06719

• The lepton assymetry should be proportional to a combination of the following 4 independent CP-invariants

$$
I_1^{(2)} = -\text{Im}[W_{12}^* V_{11} V_{21}^* W_{22}] \simeq \theta_{12} \bar{\theta}_{12} \sin \psi_1
$$

\n
$$
I_1^{(3)} = \text{Im}[W_{12}^* V_{13} V_{23}^* W_{22}] \simeq \theta_{12} \bar{\theta}_{13} \bar{\theta}_{23} \sin (\bar{\delta} + \psi_1)
$$

\n
$$
I_2^{(3)} = \text{Im}[W_{13}^* V_{12} V_{22}^* W_{23}]] \simeq \bar{\theta}_{12} \theta_{13} \theta_{23} \sin (\delta - \psi_1)
$$

\n
$$
J_W = -\text{Im}[W_{23}^* W_{22} W_{32}^* W_{33}] \simeq \theta_{12} \theta_{13} \theta_{23} \sin \delta
$$

\n
$$
Y = V^{\dagger} \text{Diag} \{y_1, y_2, y_3\} W
$$

$$
Y_B \simeq 1.3 \times 10^{-3} \sum \mu_{B/3 - L_{\alpha}}
$$

• The lepton assymetry should be proportional to a combination of the following 4 independent CP-invariants

$$
I_1^{(2)} = -\text{Im}[W_{12}^* V_{11} V_{21}^* W_{22}]
$$

\n
$$
I_1^{(3)} = \text{Im}[W_{12}^* V_{13} V_{23}^* W_{22}]
$$

\n
$$
I_2^{(3)} = \text{Im}[W_{13}^* V_{12} V_{22}^* W_{23}]
$$

\n
$$
J_W = -\text{Im}[W_{23}^* W_{22} W_{32}^* W_{33}]
$$

\nCP phases from W
\nCP phases from W
\n(only R)

• The lepton assymetry should be proportional to a combination of the following 4 independent CP-invariants

$$
I_1^{(2)} = -\text{Im}[W_{12}^* V_{11} V_{21}^* W_{22}]
$$

\n
$$
I_1^{(3)} = \text{Im}[W_{12}^* V_{13} V_{23}^* W_{22}]
$$

\n
$$
I_2^{(3)} = \text{Im}[W_{13}^* V_{12} V_{22}^* W_{23}]
$$

\n
$$
J_W = -\text{Im}[W_{23}^* W_{22} W_{32}^* W_{33}]
$$

\n
$$
N_R \ge 3
$$

 $Y = V^{\dagger} \text{Diag} \{y_1, y_2, y_3\} W$

• The lepton assymetry should be proportional to a combination of the following 4 independent CP-invariants

$$
I_1^{(2)} = -\text{Im}[W_{12}^* V_{11} V_{21}^* W_{22}]
$$

\n
$$
I_1^{(3)} = \text{Im}[W_{12}^* V_{13} V_{23}^* W_{22}]
$$

\n
$$
I_2^{(3)} = \text{Im}[W_{13}^* V_{12} V_{22}^* W_{23}]
$$

\n
$$
J_W = -\text{Im}[W_{23}^* W_{22} W_{32}^* W_{33}]
$$

\n
$$
ARS
$$

 $Y = V^{\dagger} \text{Diag} \{y_1, y_2, y_3\} W$

Sakharov Conditions

(**1**) C and CP violation. *New CP-phases in the lepton sector.*

 $Y = -iU_{PMNS}\sqrt{m_{\nu}}R^{T}\sqrt{M}\frac{\sqrt{2}}{v}$

Casas-Ibarra

 $N_R = 2$: **2** + **1** = **3 phases**

(**2**) Out of equilibrium: *at least one of the states should not reach equilibrium before TEW.*

 (3) B+L violation: SM sphalerons efficientely transfer ΔL into i

Heavy New Physics scale

$$
m_{\nu} = \frac{v^2}{2} Y M^{-1} Y^T \lesssim \mathcal{O} \left(1 \,\text{eV} \right)
$$

• $Y \sim 1$ suggests M close to the GUT scale.

• Drawback: New Physics effects at low energies very suppressed by the NP scale M.

Light New Physics scale

• Contrary to the high scale models, a low Majorana scale does not worsen the Higgs mass hierarchy problem.

• Drawback: small Yukawa couplings required.