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LCLS Recent Developments
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« Continuation of developments to extend LCLS capabilities and
robustness, preparing for LCLS-II:
* Dechirper
« Multiple Bunches — multiple Energy
* Polarized beams
 Atto-second bunches
- Automated Tuning and Application of Al technology
* Instrumentation

 Facility Preparation for LCLS-II



LCLS Beam Performance
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XTCAV X-Band Transverse Deflecting Cavity
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Recent Installation of new spherical cavity
increases resolution (almost sub-fs to few
fs).

Talk by Y. Ding



Dechirper - Update

* Chirp control provides bandwidth control

» Creative use for multi-bunch operation
» Successful SBIR Project with RadiaBeam

» Follow — on proposals exist

 Talk by A. Lutman
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Multiple Bunches, Multiple Energies
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« Laser based, slotted foil, undulator techniques, dechirper
* Frequent use by LCLS users, pump-probe experiments, structure phasing
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Summary of Parameters for Multiple Bunches, Multiple Energies
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SOFT X-RAYS
[rechnique Pulse Separation Min Pulse Energy Max Energy/Pulse Mode Setup Comments
Duration Separation Time
Fresh Slice Modes with the dechirper + orbit control.
200 - 500 uJ (20 fs Probe intensity is higher if the max delay req'd is 35 fs. Pump pulse
~_ ~L_ - 0
[fwo SASE Pulses 1510 +850fs >8fs +-2.5% duraton) SASE intensity is higher if the min delay req'd is +15 fs or more (no zero delay).
Linear SASE + Polarization Controlled SASE ~-15 - +850 fs ~5-8 fs +/-2.5% 300 w SASE Pnly pump polarization can be controlled. See also comments re: Fresh-
slice, Two SASE Pulses.
100 uJ seeded, 200 SASE Only probe polarization can be controlled. See also comments re: Fresh-
' - ~ - -~ 0,
ne Pulse Self-Seeded, One SASE 0-50fs 15-201fs +/-2.5% uJ SASE SEEDED slice, Two SASE Pulses. Requires longer setup.
0-900 fs (1st to 2nd), O - - 2.5% range for . . .
|Three SASE Pulses 50 fs (2nd to 3rd) 5-8 fs all 100 uJ SASE Second pulse has lowest intensity, weak if E > 700 eV.
|Sp|it Undulator SASE 0-50fs 40 fs +/-2.0% 30 ul SASE Minimally invasive, easy to maintain.
bouble Slotted Foil 15-70 fs ~10fs +/-1.5% 100-300 uJ SASE Mln!mally invasive, t-easy to r.na|nta|n. Delay and energy separation are
not independent, minor tuning needed between changes.
. 350 ps increments, +/- 120 o 0.5-2 mJ (100 fs SASE
[Two bucket (ns spacing) ns 40 fs +/-2% duration SASE) SEEDED Under development
win Bunches (fs spacing) : : : : : Intensity performance comparable to Fresh-slice. Max time separation
|'I' pacing shorter and tuning more invasive. Recommend Fresh Slice going forward.
HARD X-RAYS
echnique Pulse Separation Min Pulse Energy Max Energy/Pulse Mode Comments
Duration Separation
"I’win Bunches Requires long setup (laser stacker/injector tune).
'wo SASE Pulses 0-125fs ~10fs 0.2-3% 2 mJ (30 fs duration)|  SASE 1st/probe pulse always higher photon energy
[[rwin bunches + v slotted foil +/- 50 fs ~5-10 fs ~3% 50 uJ SASE
|Twin bunches + HXR Self-Seeding 0-100 fs ~10fs ~1% 150 u) per pulse | SEEDED Bﬁ;ﬂé;"m or a single color can be seeded. Requires longer setup time
bouble Slotted Foil 7-20 fs ~10fs +/-1.5% 100-300 uJ SASE anma!ly mvagve, faster setup than thm bunches. Delay/energy
separation not independent, minor tuning needed between changes.
. 350 ps increments, +/- 120 ~ 0 1-2 mJ (40 fs SASE
'wo bucket (ns spacing) ns 20fs 2% duration SASE) SEEDED Under development

resh Slice / Split Undulator

Do not apply for hard X-rays (insufficient FEL gain length).

Rapidly growing, check LCLS FAQ frequently!



New R&D project to obtain sub-femtosecond pulses
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Slotted foil + long pulse laser modulation = isolated single spike
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Polarized x-ray beam at LCLS
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Stronger fields (K: 3.5 = 5.4)
match SXR over full range

Variable Gap (1.8 <K <5.4)
match SXR over full range

Water-Cooled Vacuum Chamber
remove heat load due to MHz beams

Tighter Tolerances




Polarization Measurements Cockie Box Instrument
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Polarization experiments can be set up using the eTOF
spectrometer as developed at DESY.
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Rev. Sci. Instrum. 87, 083113 (2016);




Automation, HLA, Al
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Tuning is repetitive, can be
automated and done smarter ... —

Injector setup

FEL Setup (matching)

FEL Pointing

Fast Global Steering
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RUN XII Hours %
Maintenance 690.0 46.7
Setup 233.5 15.8
Capability 201.5 13.7
Photon Setup 177.5 12.0
Photon 92.5 6.3
Quality 69.5 4.7
Stability 11.5 0.8
Total 1476
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Manage Compl

400 hours setup
time
~1/2 (200 h) are
tuning tasks
50% reduction, 100
h saved

OCELOT (DESY)
Optimizes matching Quadrupoles

FEL Pulse
energy [mJ]

Quadrupole
Settings

Talk by D. Daniel Ratner



External Seeding Programs
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HGHG@ FERMI [4 nm, 65" harm from 260nm]
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Figure 5 | Gain curves of the EEHG and HGHG FEL at SDUV-FEL. Intensity

is measured with a calibrated CCD at the end of the radiator (red open
squares, HGHG; blue open sguares, EEHG). Error bars correspond to the
peak-to-pezk intensity statistics of 100 measurements. Simulation results are
shown as a red line (HGHG) and z blue line (EEHG).

Z.T.Zhao, et. al., Nature Photonics 6, 360—

et. al., PRL 105, 114801 (2010)

et. al., PRL 108, 024802 (2012)
PRST-AB 17, 070702 (2014)

, Nat. Photon. 10, 512-515 (2016)
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Leading Seeding Techniques
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Direct Seeding - High Harmonic Generation (HHG) — [State Of The Art: 38 nm]
FEL amplification of low power EM input, usu. harmonic of 800nm generated in noble gas

Proof of principle demonstrated. Path to SXRs unclear.
Limited to >20nm by 106 conversion efficiency. Seed must exceed shot noise in beam.

High Gain Harmonic Generation (HGHG) — [4 nm, 65" harm from 260nm]

Harmonic density bunching. Limited to <15™ harmonic in single stage
Cascade multiple stages w/fresh beam to reach soft x-rays. Demonstrated and in use

Echo-Enabled Harmonic Generation (EEHG) — [32 nm, 75" harm from 2.4um]

Harmonic density bunching. Small energy modulations required. Reach soft x-rays from
UV lasers in single stage. Proof of principle demonstrated. Tests @ SXRs upcoming.

Highly nonlinear phase space manipulation and preservation challenging.

Self Seeding (HXRSS & SXRSS)
Monochromatized FEL seeds itself. Demonstrated and in use.

Damage & rep rate limits. Pedestal/wakefields contribute
Combinations? (HGHG+EEHG, Self-Seeding +?, etc)

In development



AMO: Atomic, Molecular
&Optical Science  gyp. 5ott X-ray Materials Science

XCS: X-ray Correlation
Spectroscopy

MFX: Macromolecular
Femtosecond Crystallography

CXI: Coherent X-ray Imaging

MEC: Matter in Extreme Conditions



First Light Jan 2016
First Data Mar 2016
First Users  July 2016




X-ray mirror upgrades (early 2017)
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Substantial impact in HXR near-field quality & efficiency

New periscope to XCS to create “XPP-like” capability
Soft X-ray mirrors to be replaced / cleaned




New Soft X-ray Emission Spectrometer Commissioned
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« Portable soft x-ray spectrometer now available
« ALS Design
« 1000-3000 resolving power

« Compatible with multiple endstations & LCLS-II
« Part-funded via N. Berrah (UConn) DOE grant

4 minute data collection Cu | Cu

3% transmission from gas attenuator L
Loyo 1




Investment into data science is a critical element of our
strategy to ensure high scientific impact from LCLS

e LCLS strategic plan for computational science, theory, and data systems:

> Infrastructure for managing LCLS data
» Software tools for data processing, and fast feedback
» Advanced algorithms specific to LCLS science (hit finding, indexing, diffraction, structures)

e Strategic collaborations with other labs, and DOE “Exascale” computing

e New Computer Science Division at SLAC (2016), with a major focus on LCLS
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J Sclentific Problem
3. Publish Solution,
Preliminary Implementation
Ho-Use

s o o ESnet

I" ; /i el Implemantation

e | , . —)
G/ AR [ userGroupt | L 4

4 . d i " . —
CF_E_L Nmsc | Usaer Group 2 | ‘ ! "‘
“P.:II'.'i‘.';;._- h'_'p'.t."-.-u:'l-‘.!-t |.—f @ PrOf @ X
SLLAC CS =
Applied Math 1:; ~.

Partnar
Chair Stanford GS
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Stanford | ENGINEERING

Computer Science

y

ContactiCollaboration

Broad set of partnerships being formed to tie LCLS needs to CS solutions




New support labs planned for the FEH in 2017 —
Also enables optimization of the hutches

LCLS Far Experimental Hall

SLAT
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MEC laser upgrade in 2017 will provide 2 beams with
2x energy (40 J), stability, and NIF-like pulse-shaping

g R g

Two ‘high energy’ arms (total 4 J/ns at 351 nm)
Stable, shaped front-end (2-3% RMS)

New laser diagnostic suite incorporated into the DAQ
Appointed a ‘Laser manager’ to drive robust delivery

100 TW short pulse system will also be commissioned in the FY17 downtime



4 new instrument areas will be developed for LCLS-II
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* 4 new instrument areas are planned
* 9instruments available in total for LCLS-II
XCS || MEX || CXI | | MEC
Far
- Hall
T
T |
~70m
NEH 1.1: Atomic, Molecular and Optical
NEH 2.1: Resonant Inelastic X-ray Scattering 3 Soft X-ray
NEH 2.2: Soft X-ray Research
NEH 1.2: Tender X-ray Instrument :—- 1 “tender” x-ray

CXl:

MEC:

XPP: X-ray Pump Probe
XCS:
MFX:

X-ray Correlation Spectroscopy
Macromolecular Femtosecond Crystallography
Coherent X-ray Imaging

Matter in Extreme Conditions _

= 5 Hard X-ray
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Example — NEH1.2: Tender X-ray Instrument (TXI)

Sample

Being designed as a very flexible instrument: r
Injection

« Capable of using HXU, or SXU, or both simultaneously
« Tender x-ray imaging
« Tender x-ray spectroscopy

Interaction
Point

SXU - Detector
AL = HXR KB l
Pulse 1 L ePixHR detectors
- « 5—50 kHz development
Pulse 2 HXU « 50 um pixels for low noise
« 100 um high dy. range

22



Soft X-ray Experimental

Beam Undulator Halls
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LCLS-Il Layout = S
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LCLS-II provides a factor >10% in average brightness (to 5 keV),

and extends the reach of the Cu linac to 25 keV

High Peak Brightness
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The leap from 120 Hz to up to 1 MHz, and access to >25 keV

drives development across the entire facility
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Sector 0 to 10 equipment removal — phase 1 completed




LCLS-II Project is progressing well

¥ T EaEa N undulators
- 1st CM test underway
this week (at Fermilab) -

kicker mwall

K
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« 4 GeV SC linac in the 1st km of the SLAC tunnel
» Exploits new “Nitrogen doping” technique
» Will run CW up to ~1 MHz
» Dual cryoplant to provide substantial margin

« Two new variable-gap undulators
» Recent choice of vertical polarization for HXU

« Modified experimental hall

e LCLS-1linac is retained

» Parallel activity to increase its robustness,
stability, and extend performance

» Critical Decisions 2 and 3 approved (April 2016)s




Timeline
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Future plans
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A high energy extension, LCLS-II-HE, is currently being designed,
able to provide high repetition rate in the hard x-ray regime
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« Extend energy reach from Electron dynamics  Atomic-scall structurel]
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« Additional cryomodules in the newly refurbished space in the existing tunnel
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BESAC facilities prioritization: LCLS-II-HE is

“absolutely central” and “ready to initiate construction”
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LCLS-II-HE scope includes instrumentation to take full
advantage of the transformative nature of the new source

« Combined sources for simultaneous atomic and electronic structure

« Enables a variety of new instrumentation for:
« High resolution (~1 meV) spectroscopy
« Atomic-scale imaging of fluctuating systems
- MEC

These extensions will be implemented within the existing infrastructure



Final remarks

o1 A

g e A

The next 5 years will see major development at LCLS

In the past year, significant attention has been paid to increasing user
access, and improving the efficiency of operations

Implementation of LCLS-Il will actively develop:
« Automation of beamlines and instruments

« Major steps in detector, sample delivery, and data analysis capabilities
« Offline support laboratories

Your feedback on these developments is critically important



