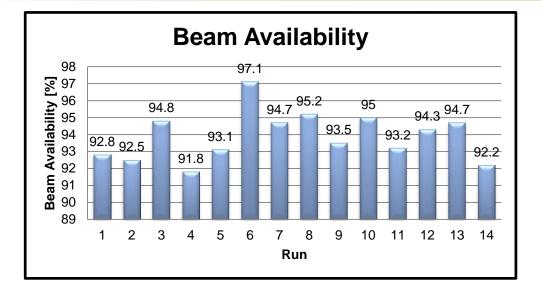
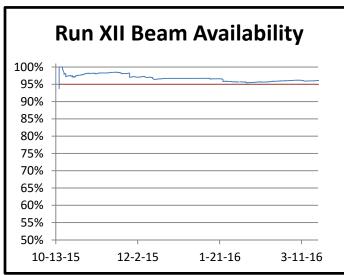
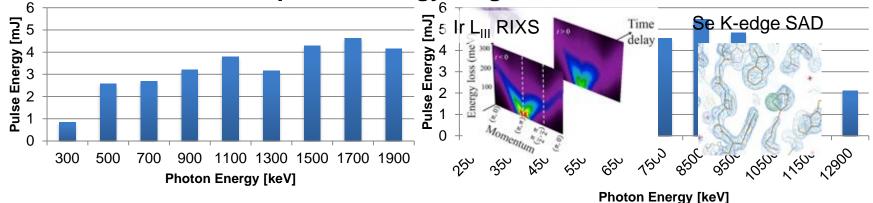
LCLS – Update

Axel Brachmann On behalf of LCLS

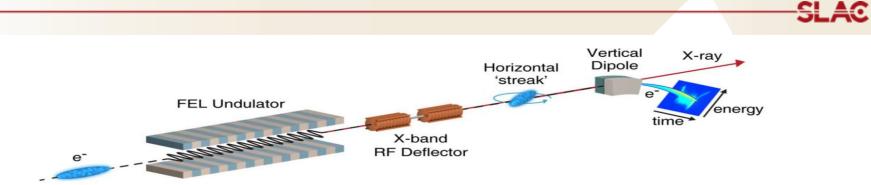


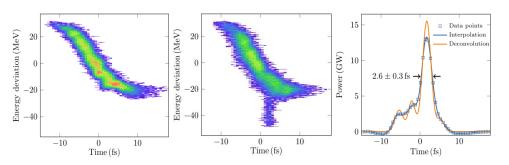

SLAC NATIONAL ACCELERATOR

LCLS Recent Developments


- Continuation of developments to extend LCLS capabilities and robustness, preparing for LCLS-II:
 - Dechirper
 - Multiple Bunches multiple Energy
 - Polarized beams
 - Atto-second bunches
 - Automated Tuning and Application of AI technology
 - Instrumentation
 - Facility Preparation for LCLS-II

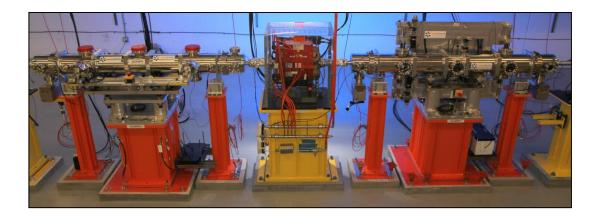
SLAC

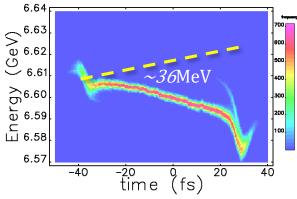


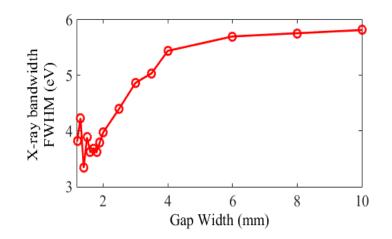


Extended photon energy range: 0.25–12.8 keV

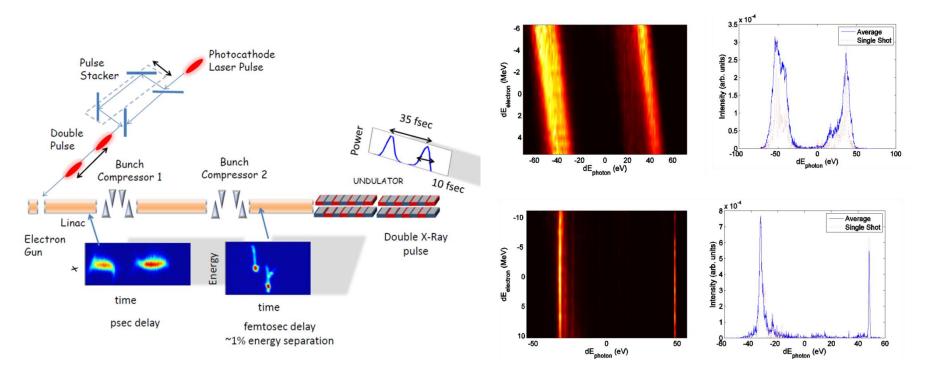
XTCAV X-Band Transverse Deflecting Cavity




Recent Installation of new spherical cavity increases resolution (almost sub-fs to few fs).


Talk by Y. Ding

Dechirper - Update



- Chirp control provides bandwidth control
- Creative use for multi-bunch operation
- Successful SBIR Project with RadiaBeam
- Follow on proposals exist
- Talk by A. Lutman

Multiple Bunches, Multiple Energies

- Many techniques allow fs to ns separation
- · Laser based, slotted foil, undulator techniques, dechirper
- Frequent use by LCLS users, pump-probe experiments, structure phasing

Summary of Parameters for Multiple Bunches, Multiple Energies

SOFT X-RAYS

Technique	Pulse Separation	Min Pulse Duration	Energy Separation	Max Energy/Pulse	Mode	Setup Time	Comments
Fresh Slice							Modes with the dechirper + orbit control.
Two SASE Pulses	~-15 to +850 fs	~5-8 fs	+/-2.5%	200 - 500 uJ (20 fs duraton)	SASE		Probe intensity is higher if the max delay req'd is 35 fs. Pump pulse intensity is higher if the min delay req'd is +15 fs or more (no zero delay).
Linear SASE + Polarization Controlled SASE	~-15 - +850 fs	~5-8 fs	+/-2.5%	300 uJ	SASE		Only pump polarization can be controlled. See also comments re: Fresh- slice, Two SASE Pulses.
One Pulse Self-Seeded, One SASE	0 - 50 fs	~15-20 fs	+/-2.5%	100 uJ seeded, 200 uJ SASE	SASE SEEDED		Only probe polarization can be controlled. See also comments re: Fresh- slice, Two SASE Pulses. Requires longer setup.
Three SASE Pulses	0 - 900 fs (1st to 2nd), 0 - 50 fs (2nd to 3rd)	~5-8 fs	2.5% range for all	100 uJ	SASE		Second pulse has lowest intensity, weak if E > 700 eV.
Split Undulator SASE	0 - 50 fs	40 fs	+/-2.0%	30 uJ	SASE		Minimally invasive, easy to maintain.
Double Slotted Foil	15 - 70 fs	~ 10 fs	+/-1.5%	100-300 uJ	SASE		Minimally invasive, easy to maintain. Delay and energy separation are not independent, minor tuning needed between changes.
Two bucket (ns spacing)	350 ps increments, +/- 120 ns	40 fs	+/-2%	0.5-2 mJ (100 fs duration SASE)	SASE SEEDED		Under development
Twin Bunches (fs spacing)	-	-	-	-	-		Intensity performance comparable to Fresh-slice. Max time separation shorter and tuning more invasive. Recommend Fresh Slice going forward.

SLAC

HARD X-RAYS

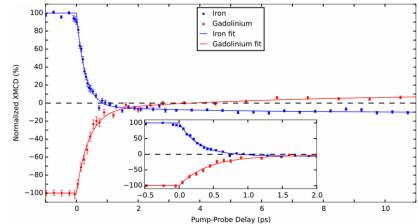
Technique	Pulse Separation	Min Pulse	Energy	Max Energy/Pulse	Mode	Comments
		Duration	Separation			
Twin Bunches						Requires long setup (laser stacker/injector tune).
Two SASE Pulses	0 - 125 fs	~ 10 fs	0.2-3%	2 mJ (30 fs duration)	SASE	1st/probe pulse always higher photon energy
Twin bunches + V slotted foil	+/- 50 fs	~5-10 fs	~3%	50 uJ	SASE	
Twin bunches + HXR Self-Seeding	0-100 fs	~ 10 fs	~1 %	150 ເປ per pulse	SEEDED	Both colors or a single color can be seeded. Requires longer setup time (hours).
Double Slotted Foil	7-20 fs	~ 10 fs	+/-1.5%	100-300 uJ	SASE	Minimally invasive, faster setup than twin bunches. Delay/energy separation not independent, minor tuning needed between changes.
Two bucket (ns spacing)	350 ps increments, +/- 120 ns	20 fs	~ 2%	1-2 mJ (40 fs duration SASE)	SASE SEEDED	Under development
Fresh Slice / Split Undulator	-	-	-	-	-	Do not apply for hard X-rays (insufficient FEL gain length).

Rapidly growing, check LCLS FAQ frequently!

New R&D project to obtain sub-femtosecond pulses

Expected performance: HEAD 8375 8375 8375 8370 × 8370 8370 <1 fs duration 8365 8365 8365 5 eV coherent bandwidth 8360 8360 8360 ΓAII 10 uJ soft X-ray pulses 0 t (fs) t (fs) -2 0 t (fs) -2 SXRSS chicane LCLS UNDULATOR MODULATOR e-BEAM SUB-FS 6 fs unspoiled **IR LASER PULSE** sub-fs X-RAY PULSE core spike 2.5 × 10° Spectral Brightness (arb. units) 5.0 1.0 2.1 2.0 2.0 Ho:YLF 2 µm laser Power (GW) **APS Wiggler** (reconfigured) 0.6 fs 5 eV **SXRSS** Chicane -90 t (fs) -5 10 -2 2 5 -1 ∆ Energy (eV)

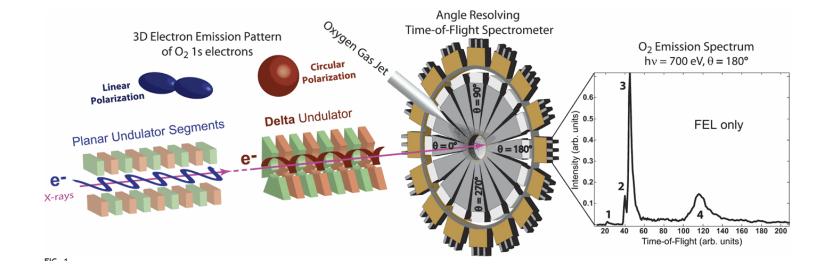
SLAC


Slotted foil + long pulse laser modulation → isolated single spike

Ago Marinelli – testing in 2017-18

XLEAP (X-ray Laser-Enhanced Attosecond Pulse generation)

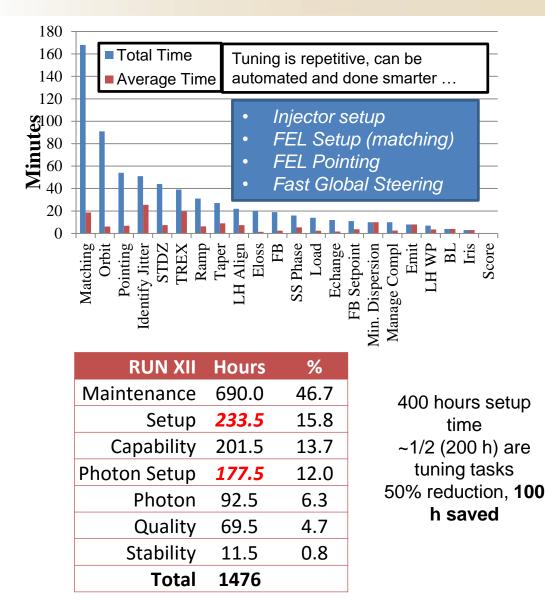
Polarized x-ray beam at LCLS

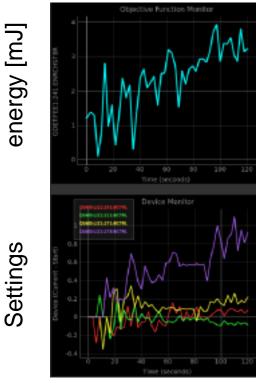


- Stronger fields (K: $3.5 \Rightarrow 5.4$) match SXR over full range
- Variable Gap (1.8 < K < 5.4) match SXR over full range
- Water-Cooled Vacuum Chamber remove heat load due to MHz beams
- Tighter Tolerances

Polarization Measurements Cockie Box Instrument

SLAC


Polarization experiments can be set up using the eTOF spectrometer as developed at DESY.


Rev. Sci. Instrum. 87, 083113 (2016);

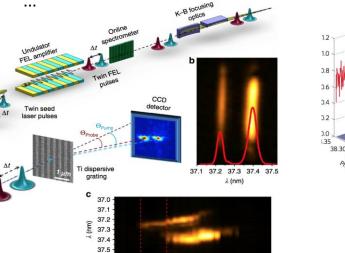
Automation, HLA, AI

SLAC

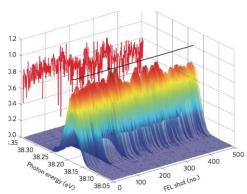
OCELOT (DESY) Optimizes matching Quadrupoles

FEL Pulse

Quadrupole


Talk by D. Daniel Ratner

External Seeding Programs


HGHG@ FERMI [4 nm, 65th harm from 260nm]

E. Allaria, et. al., Nature Photonics 6, 699–704 (2012) E. Allaria, et. al., Nature Photonics 7, 913–918 (2013)

a

37.6

EEHG @ SINAP

SLAC

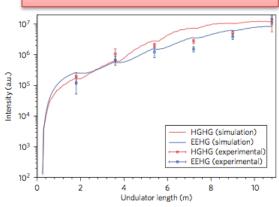
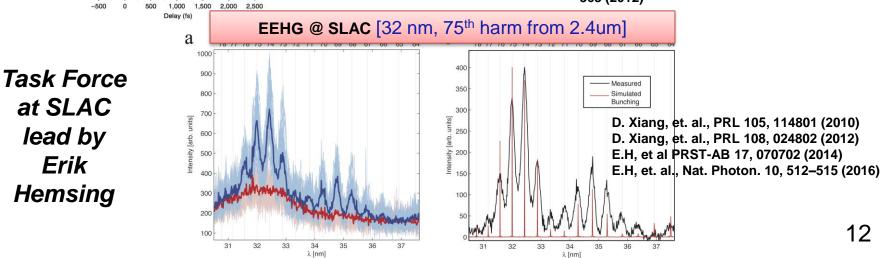



Figure 5 | Gain curves of the EEHG and HGHG FEL at SDUV-FEL. Intensity is measured with a calibrated CCD at the end of the radiator (red open squares, HGHG; blue open squares, EEHG). Error bars correspond to the peak-to-peak intensity statistics of 100 measurements. Simulation results are shown as a red line (HGHG) and a blue line (EEHG).

Z. T. Zhao, et. al., Nature Photonics 6, 360–363 (2012)

Direct Seeding - High Harmonic Generation (HHG) – [State Of The Art: 38 nm] FEL amplification of low power EM input, usu. harmonic of 800nm generated in noble gas **Proof of principle demonstrated. Path to SXRs unclear.**

Limited to >20nm by 10⁻⁶ conversion efficiency. Seed must exceed shot noise in beam.

High Gain Harmonic Generation (HGHG) – [4 nm, 65th harm from 260nm]

Harmonic density bunching. Limited to <15th harmonic in single stage

Cascade multiple stages w/fresh beam to reach soft x-rays. Demonstrated and in use

Echo-Enabled Harmonic Generation (EEHG) – [32 nm, 75th harm from 2.4um]

Harmonic density bunching. Small energy modulations required. Reach soft x-rays from UV lasers in single stage. **Proof of principle demonstrated. Tests @ SXRs upcoming.** Highly nonlinear phase space manipulation and preservation challenging.

Self Seeding (HXRSS & SXRSS)

Monochromatized FEL seeds itself. Demonstrated and in use.

Damage & rep rate limits. Pedestal/wakefields contribute

Combinations? (HGHG+EEHG, Self-Seeding +?, etc)

In development

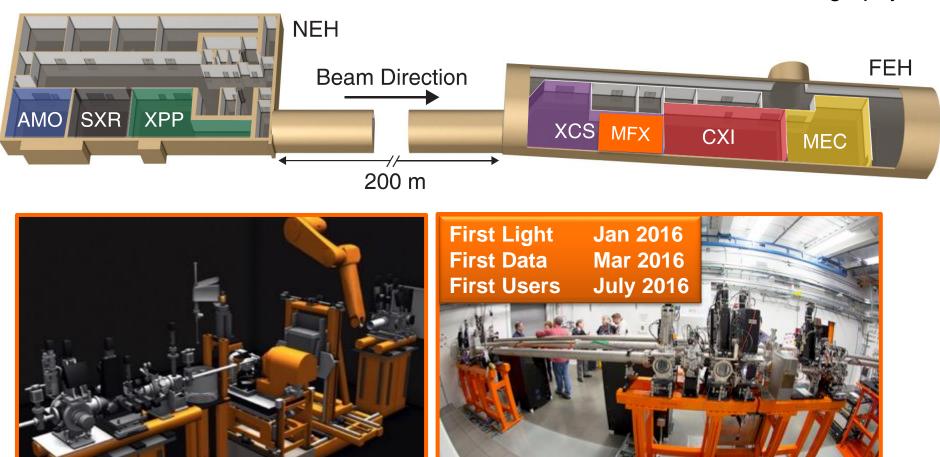
XPP: X-ray Pump Probe

Recent LCLS Instrument Developments

XCS: X-ray Correlation Spectroscopy

> MFX: Macromolecular Femtosecond Crystallography

> > CXI: Coherent X-ray Imaging

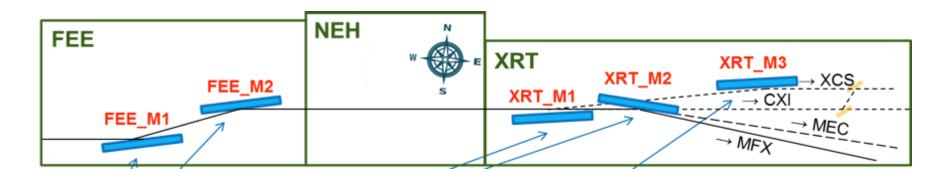

MEC: Matter in Extreme Conditions

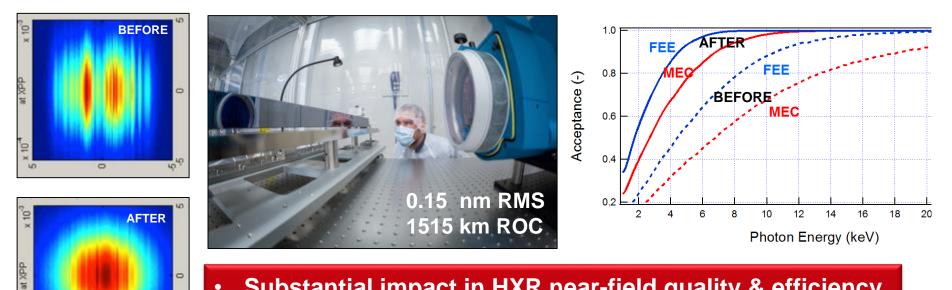
New instrument area: "MFX" in hutch "4.5"

-SLAC

Macromolecular Femtosecond Xtallography

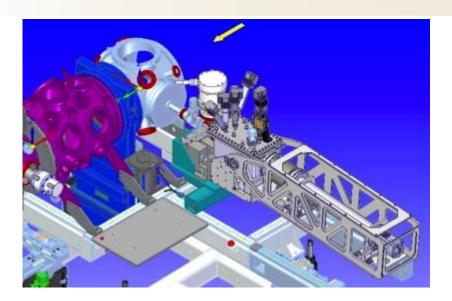
Update: NSF grant awarded for new goniometer endstation

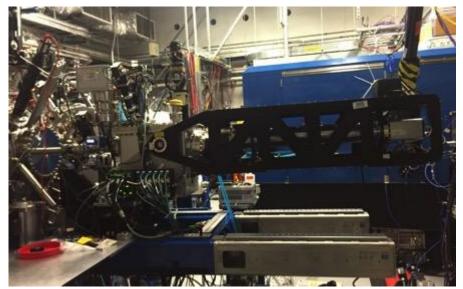

X-ray mirror upgrades (early 2017)


2

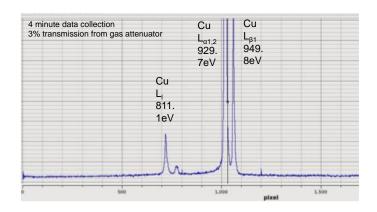
50

0

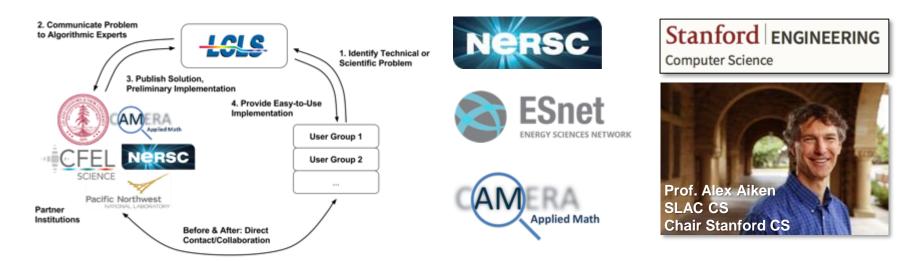

44

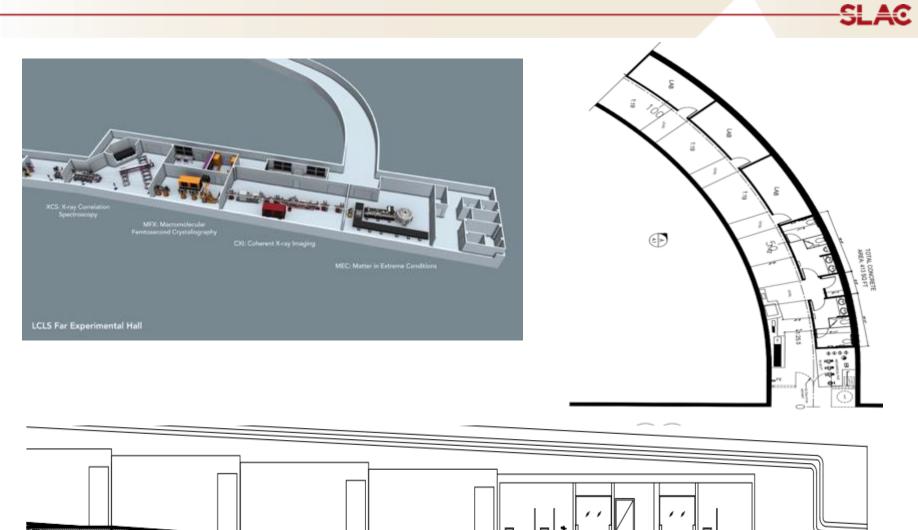


- Substantial impact in HXR near-field quality & efficiency 0
- New periscope to XCS to create "XPP-like" capability •
- Soft X-ray mirrors to be replaced / cleaned •


New Soft X-ray Emission Spectrometer Commissioned

Portable soft x-ray spectrometer now available

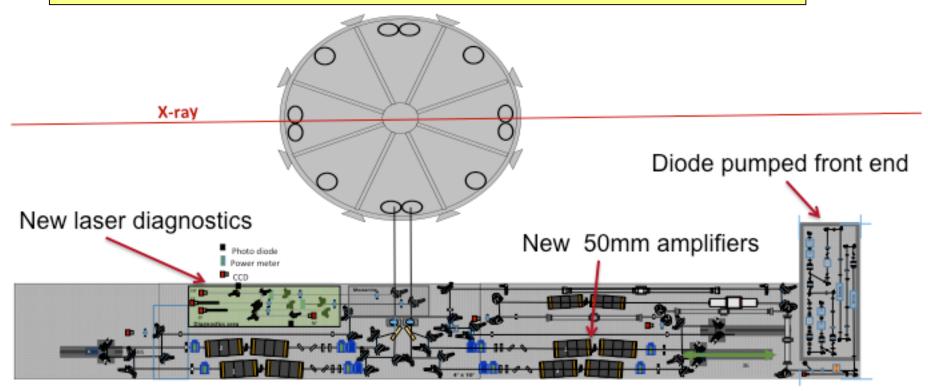

- ALS Design
- 1000-3000 resolving power
- Compatible with multiple endstations & LCLS-II
- Part-funded via N. Berrah (UConn) DOE grant


Investment into <u>data science</u> is a critical element of our strategy to ensure high scientific impact from LCLS

- LCLS strategic plan for computational science, theory, and data systems:
 - Infrastructure for managing LCLS data
 - Software **tools** for data processing, and fast feedback
 - Advanced algorithms specific to LCLS science (hit finding, indexing, diffraction, structures)
- Strategic collaborations with other labs, and DOE "Exascale" computing
- New Computer Science Division at SLAC (2016), with a major focus on LCLS

Broad set of partnerships being formed to tie LCLS needs to CS solutions

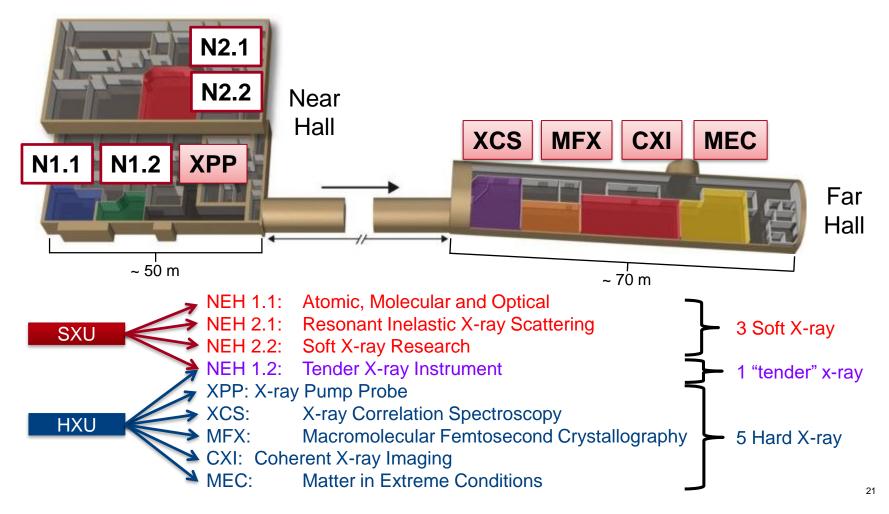
New support labs planned for the FEH in 2017 – Also enables optimization of the hutches


CONCRETE PAG

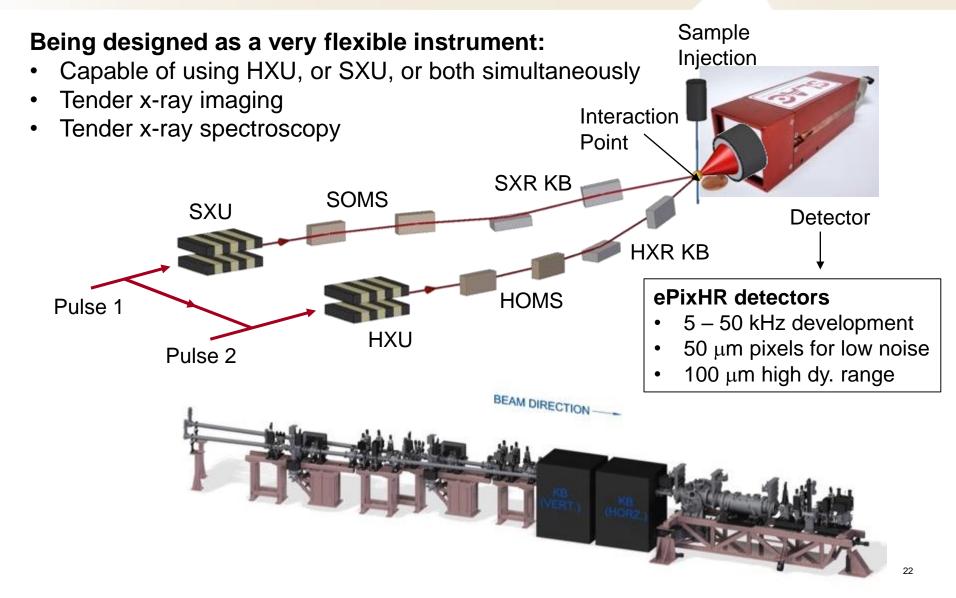
SLMP

MEC laser upgrade in 2017 will provide 2 beams with 2x energy (40 J), stability, and NIF-like pulse-shaping

SLAC


- Two 'high energy' arms (total 4 J/ns at 351 nm)
- Stable, shaped front-end (2-3% RMS)
- New laser diagnostic suite incorporated into the DAQ
- Appointed a 'Laser manager' to drive robust delivery

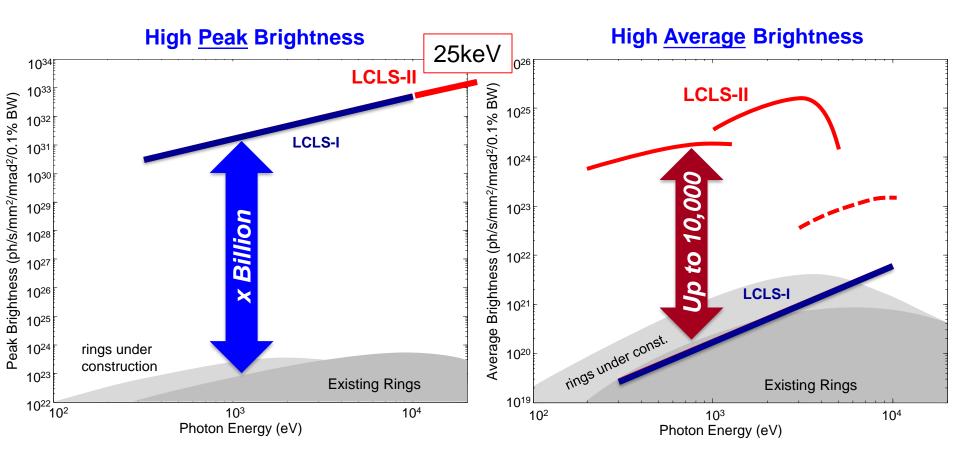
100 TW short pulse system will also be commissioned in the FY17 downtime


4 new instrument areas will be developed for LCLS-II

- 4 new instrument areas are planned
- 9 instruments available in total for LCLS-II

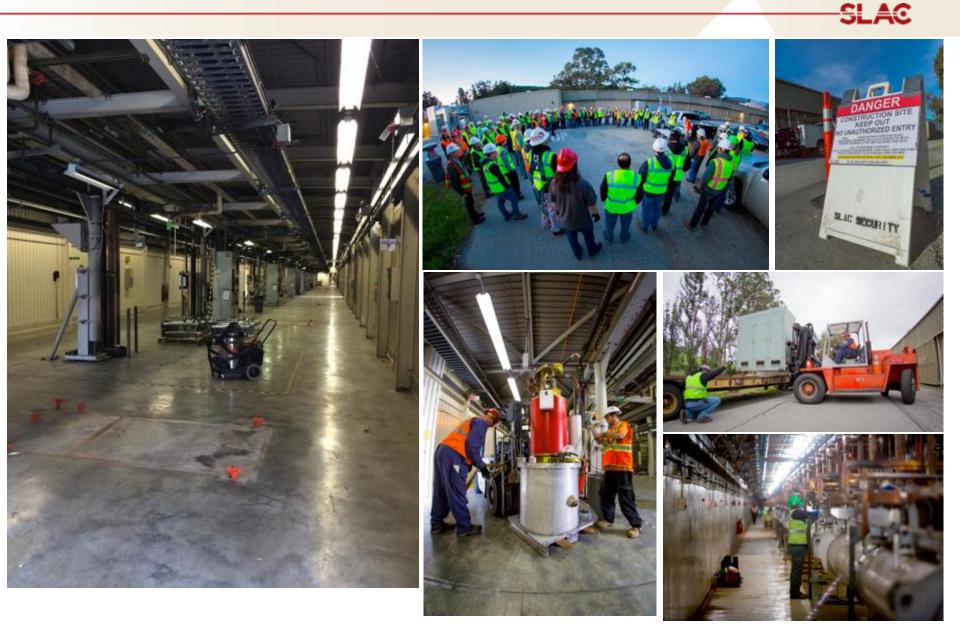
Example – NEH1.2: Tender X-ray Instrument (TXI)

-SLAC


LCLS-II

LCLS-II, a major (B\$) upgrade to LCLS is fully underway. CD2/3 was approved in 2016. Online in 2020.

LCL


LCLS-II provides a factor >10³ in average brightness (to 5 keV), and extends the reach of the Cu linac to 25 keV

The leap from 120 Hz to up to 1 MHz, and access to >25 keV drives development across the entire facility

Sector 0 to 10 equipment removal – phase 1 completed

LCLS-II Project is progressing well

L3-Linac

0.93 m

1st CM test underway this week (at Fermilab)

L2-Linac

BC₂

LH

BC1

4 GeV SC linac in the 1st km of the SLAC tunnel

0.65 m

D10

m-wall

LCLS-I

Linac

kicker

SLAC

2.50 m

LTUS

LTUH

SXU

undulators

- Exploits new "Nitrogen doping" technique
- ➢ Will run CW up to ∼ 1 MHz
- Dual cryoplant to provide substantial margin
- Two new variable-gap undulators
 - Recent choice of vertical polarization for HXU
- Modified experimental hall
- LCLS-1 linac is retained
 - Parallel activity to increase its robustness, stability, and extend performance
- Critical Decisions 2 and 3 approved (April 2016)

Timeline

SLAC YOU ARE HERE 6 month 12 month downtime downtime F 2017 FY2016 FY2018 FY2019 FY2020 FMAMJ ONDJF AM s 0 D D О А s 0 HXR Ops Run 12 **Run 13 Run 14** Run 15 **Run 16** SXR Ops 19 wks 20 wks 20 wks 24 wks 24 wks Key:

> 12 month experimental runs

Proposals for Run 15 due 7 November

Future plans ...

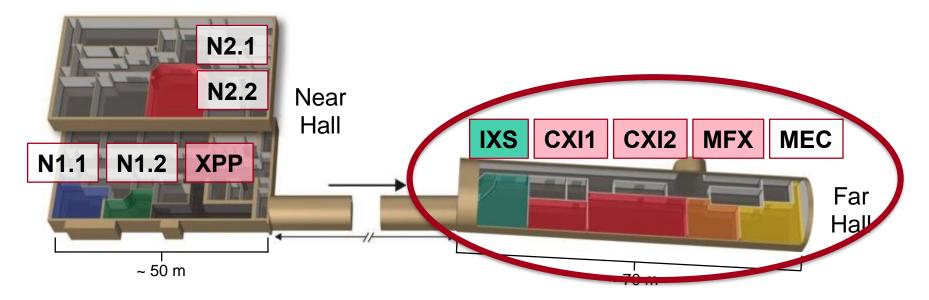
LCLS-II

LCLS-II-HE

LCLS

A high energy extension, LCLS-II-HE, is currently being designed, able to provide high repetition rate in the hard x-ray regime

SLAC


- Extend energy reach from **Electron dynamics** Atomic-scale structure • 10¹ 5 keV to 12 – 20 keV (Lm) X-ray Pulse 100 (in the fundamental) Up to 20 keV LCLS-II with emittance Energy LCLS-II-HE reduction 10-1 10-2 12 0 Photon Energy (keV)
 - Additional cryomodules in the newly refurbished space in the existing tunnel

BESAC facilities prioritization: LCLS-II-HE is "absolutely central" and "ready to initiate construction"

LCLS-II-HE scope includes instrumentation to take full advantage of the transformative nature of the new source

- Combined sources for simultaneous atomic and electronic structure
- Enables a variety of new instrumentation for:
 - High resolution (~1 meV) spectroscopy
 - Atomic-scale imaging of fluctuating systems
 - MEC

These extensions will be implemented within the existing infrastructure

- The next 5 years will see major development at LCLS
- In the past year, significant attention has been paid to increasing user access, and improving the efficiency of operations

- Implementation of LCLS-II will actively develop:
 - Automation of beamlines and instruments
 - Major steps in detector, sample delivery, and data analysis capabilities
 - Offline support laboratories
- Your feedback on these developments is critically important