Beam commissioning of SACLA Soft X-ray FEL beamline driven by a compact dedicated linac

Takahiro Inagaki, Kazuaki Togawa, Toru Hara, Yasuyuki Tajiri, Shigeki Owada, Hitoshi Tanaka, and SACLA staffs.

RIKEN SPring-8 center, JASRI, SPring-8 services, Co. Ltd.

Sering-8 angstrom compact free electron laser

SIKEN

JASRI

- Overview of the soft X-ray FEL beamline in SACLA
- Accelerator commissioning
- SASE performance
- Summary

Soft X-ray FEL beamline in SACLA

- 2005-2013 Prototype accelerator "SCSS"
- Move to SACLA-BL1 and rearranged as "SCSS+".
 - Add accelerator: 250 MeV → 500 MeV
 - Add undulator: λ_u =15mm, K=1.5, 9m $\rightarrow \lambda_u$ =18mm, K=2.1, 14m
 - Replace LLRF and HVPS for better stability and reliability.
- 2015 "SCSS+" commissioning started. Lasing at 40 eV.
- 2016 User run started. 500 MeV \rightarrow 800 MeV, .

SACLA

SCSS

(2005-2013)

Operation parameters

		SCSS+ / BL1	SACLA (BL3)
Electron beam	Energy	350~800 MeV	5~8 GeV
	Charge	250 pC	250 pC
	Peak current	∼150 A	∼ 10 kA
	Bunch length	600 fs (FWHM)	\sim 10 fs (FWHM)
	Repetition rate	60 pps	30~60 pps
Undulator	Undulator length	14 m	106 m
	Undulator	18 mm	18 mm
	K-value	1.5~2.1	1.5~2.6
FEL	Photon energy	20∼110 eV (60∼11 nm)	5 ~ 15 keV (0.2 ~ 0.08 nm)
	Pulse energy	∼25 μJ/pulse	∼600 μJ/pulse

SCSS+ accelerator configuration

Photograph of the accelerator and undulator

T. Inagaki, RIKEN/SPring-8, 8th XFEL meeting (PAL), Oct. 25, 2016

- Overview of the soft X-ray FEL beamline in SACLA
- <u>Accelerator commissioning</u>
- SASE performance
- Summary

Accelerator commissioning & diagnostics

- Sept. 2015~ beam commissioning in a similar way to SCSS and SACLA.
- Oct. 2015 First SASE lasing at 40 eV, with 500 MeV beam.
- <u>Transverse property of the beam</u>
 - Trajectory
 Cavity-BPM
 - Envelope Screen monitor (Alumina, OTR, YAG)
 - Charge CT, Cavity-BPM
 - Beam loss
 Fiber loss monitor
- Longitudinal property of the beam
 - Beam energy
 Chicane (BC1, BC2) magnets
 - Bunch length No temporal deflection cavity in SCSS+

Fast CT several 100 ps

Coherent TR monitor ~several 10 ps

RF zero phasing method ~ sub ps

Streak camera ~ several 100 fs

CSR monitor

SACLA

We show

in next slides...

Tuning of velocity bunching at 238 MHz-SHB

- Energy chirp ±150 kV
- Measure the pulse width of two CT signals.
- Adjust RF phase to compress the bunch length.

Tuning of velocity bunching at 476 MHz Booster

- Accelerates the beam to 1 MeV and adjust the focal point of the velocity bunching.
- Compressed bunch emits coherent transition radiation (CTR) at two screen monitors.
- CTR is detected with waveguide cut-off filters.

Bunch length measurement after BC1

Bunch length measurement using streak camera

- Measure temporal width of OTR using Hamamatsu FESCA-200.
- Since OTR is weak, image of 30 shots are accumulated.
- (align the center of the distribution in each shot, for timing jitter correction)
- Temporal resolution ~ several 100 fs.

- Overview of the soft X-ray FEL beamline in SACLA
- Accelerator commissioning
- <u>SASE performance</u>
- Summary

SASE spatial profile at YAG screen monitor

- Large photon divergence, due to low energy
- Small aperture (ϕ 6 mm) at the gas attenuator cuts the SASE.
 - 42 eV (K=2.1) Transmission \sim 45%
 - 62 eV (K=1.5) Transmission 70~80%
- We plan to replace the small aperture.

SASE energy spectrum

- Grating-type singleshot spectrometer
- Spectral width \sim 1 eV (FWHM)
- Photon energy is stable within the spectral width.

T. Inagaki, RIKEN/SPring-8, 8th XFEL meeting (PAL), Oct. 25, 2016

SASE intensity (pulse energy) at 41 eV

- Monitored with two argon gas monitors.
- Absolute intensity was calibrated with calorimetric method.
- Typical pulse energy ~25 μJ at experimental hall (50 μJ at undulator)
- Shot-by-shot fluctuation \sim 30% (σ) SASE is not saturated?

Trend graph of the pulse energy 500 MeV, K=2.1, 41 eV

Beam energy upgrade (500 MeV → 800 MeV)

- Two C-band linac units was installed in this summer.
- Last week we started the commissioning with 800 MeV beam energy.
- Photon energy 110 eV (11 nm) (preliminary)
- SASE pulse energy ~ 23 μJ (preliminary)

- Overview of the soft X-ray FEL beamline in SACLA
- Accelerator commissioning
- SASE performance
- <u>Summary</u>

Summary and future plan

- Soft X-ray FEL beamline was constructed at SACLA-BL1, which was the relocation and upgrade of "SCSS"
- Commissioning was started in September 2015.
- User run was started in July 2016.
- Intense SASE radiation is obtained in wide energy range.
 - Electron beam energy 350~800 MeV
 - \bigcirc SASE photon energy 20 \sim 110eV
 - \triangle SASE pulse energy \sim 25 μ J (50 μ J at the undulator)
 - \triangle Shot-by-shot fluctuation \sim 30% ...not yet reach to SASE saturation.

Future plan

- Higher peak current, with a harmonic cavity (C-band) at BC1
- Add a C-band linac for higher energy (available space up to 1.7 GeV).
- Add an undulator segment for more pulse energy.
- Seeded FEL, ...

