XTCAV for electron beam and lasing temporal diagnostics at the LCLS

Yuantao Ding 10/24/2016

SLAC National Accelerator Laboratory

Hard X-ray Collaboration Meeting, PAL

Office of Science

Outline

Introduction

- Recent SLED upgrade
- XTCAV applications
- Summary

TCAV: an RF "streak" camera for e-beam

X-band TCAV: (before SLED)		Temp. resol. $\sigma_{t,R} \propto \frac{1}{2}$	$\frac{\lambda_{rf}}{V_0} \sqrt{E \frac{\varepsilon_{N,x}}{\beta_x(s_0)}}$
Frequency	11.424 GHz		
		HXR: (14GeV)	SXR: (4.3GeV)
Maximum kick	45 MV@35MW		
		Calib.factor ~40,	Calib. factor ~1
	Devis 0	$\sigma_{t,R} \sim 4 fs;$	$\sigma_{t,R} \sim 1 \mathbf{fs};$

~120,

X-ray power profile reconstruction

Two formulas compute profiles*

 $P_{\text{FEL}}(t) = \left[\langle E \rangle_{\text{FEL off}}(t) - \langle E \rangle_{\text{FEL on}}(t) \right] \times I(t)$

 $P_{\text{FEL}}(t) \propto \left[\sigma_{E,\text{FEL on}}^2(t) - \sigma_{E,\text{FEL off}}^2(t)\right] \times I^{2/3}(t)$

- Typ. disagree due if...
 - Poor SNR (filters, camera settings)
 - Bad image processing
 - Glitchy moment calculation
- Comparison is free "consistency check"

* T. Maxwell, *Proc. SPIE 9210*, X-Ray Free-Electron Lasers: Beam Diagnostics, Beamline Instrumentation, and Applications II, 92100J (2014).

C. Behrens et al., Nat. Commun. 5:3762 (2014). Y. Ding et al., PRSTAB 14, 120701 (2011).

X-band SLED Cavity & Coupler Assembly - Designed by Juwen Wang

Sphere diameter < 12 cm

Final Brazed Assembly

J. Wang et al., "R&D of a Super-compact SLED System at SLAC", IPAC'16, MOOCA01.

Beam Streaking enhancement with SLED mode

Resolutions improved by a factor of 2! For soft x-rays, we could get sub-fs resolution now.

P. Krejcik et al., Sub-fs Resolution with the Enhanced Operation of the X-band Transverse Deflecting Cavity using an RF pulse Compression SLED Cavity, WEPG77, IBIC 2016.

Application Examples

XTCAV provides e-beam/x-ray temporal characterization:

- e-beam/x-ray profile;
- slotted foil;
- microbunching benchmark;

XTCAV enables new operating mode development:

- shaping/collimation mode;
- twin-bunch setup;
- fresh-slice lasing;

Lasing characterization

XTCAV measures the lasing, and spoiling

Measurements with foil-scan at LCLS

Microbunching benchmark

D. Ratner et al., PRSTAB 18, 030704 (2015); J. Qiang et al., NaPAC 2016.

Beam shaping with horn-collimation mode

> Electron bunch head and tail are truncated in BC1 by a transverse collimator, typically from 250pC to 180pC.

This shapes the electron beam longitudinal phase space and achieves a uniform current profile, which reduces CSR problem and helps transverse matching, tapering efficiency and bandwidth control.

Horn-collimation has been developed as a routine operating mode at the LCLS, delivering over 4-mJ SASE FEL pulses and also benefiting self-seeding performance.

Horn-collimation improves bandwidth

Twin-Bunch Two-Color FEL

ATIONAL ACCELERATOR LABORATOR

Twin-bunch takes full advantage of the XTCAV capability.

- Improve the peak power of 2-color SASE by a factor 20 at hard x-rays

- Allow 2 color self-seeding with large separation
- Allow x-ray pump/x-ray probe at high tensities
 - ✓ ~10 fs pulse duration, over 1mJ pulse energy, pulse delay up to 150 fs.
 - ✓ Up to 1% energy separation at HXR.

(A. Marinelli et al., Nature Commun. 6, 6369, 2015)

40

Fresh-slice lasing mode

(See A. Lutman's talk)

Summary

- XTCAV has been available for routine operations and synchronized data recording at the experimental hutch.
- It is critical for some special modes (twinbunch, selfseeding, collimation etc.) setup.

• We thank the support from the SLAC community for the XTCAV project. Special thanks to P. Krejcik, J. Wang, T. Maxwell and C. Behrens.

