X-Ray Laser-Enhanced Attosecond Pulses

The Collaboration

SLAC

AD: *A. Marinelli (project lead)* J. Welch, E. Kraft (lead engineer), K. Luchini, J. Amann, P. Krejcik, J. Duris, J. MacArthur, P. Baxevanis, Z.

Huang

LCLS: A. Fry, S. Vetter, P. Hering, A. Miahanari, J. Hastings **PULSE**: J. Cryan, P. Bucksbaum

ANL

A. Zholents, J. Xu

Sub-fs Science

"Many of our great challenges in energy science, material science, and bioscience require new insights that lie beyond this femtosecond barrier..." BESAC report, Nov 2015 Chapter 4

CHALLENGES AT THE FRONTIERS OF MATTER AND ENERGY: Transformative Opportunities for Discovery Science

Further exploiting the degree of electronic coherence holds promise for the development of new energy technologies.

Attosecond Pulses at HXR

What limits us at low photon energy?

The interest in sub-fs pulses is in the SXR region for ultrafast time-resolved spectroscopy. Requires ~3-5 eV of coherent bandwidth. However, typical single-spike duration is 1-2 fs at low energy...

Fundamental limit in FELs $\tau_{rms} \sim \lambda L_g / \lambda_u c$

VOLUME 73, NUMBER 1 PHYSICAL REVIEW LETTERS 4 JULY 1994

Spectrum, Temporal Structure, and Fluctuations in a High-Gain Free-Electron Laser Starting from Noise

SLAC

R. Bonifacio,^{1,2} L. De Salvo,¹ P. Pierini,² N. Piovella,¹ and C. Pellegrini³

At SXR energy typical spike length ~1-2 fs

Sub-fs pulse operation requires:1) Sub-fs lasing bunch2) Shorter gain-length!

Attosecond Slicing (ESASE)

Proposed Scheme

8380 8380 8380 HEAD 8375 8375 8375 ≻⁸³⁷⁰ 8370 8370 > > 8365 8365 8365 8360 8360 8360 TAIL -2 0 2 -2 0 -2 2 0 2 t (fs) t (fs) t (fs) SXRSS chicane LCLS UNDULATOR MODULATOR e-BEAM SUB-FS **IR LASER PULSE** 6 fs unspoiled sub-fs **X-RAY PULSE** core spike

Overcome jitter and difficulties associated with single-cycle laser:

- Use a ps-long laser, λ = 2um
- 6 fs lasing core (from spoiler or optical shaping) matching the optical laser wavelength

si ac

The XLEAP Project

PROJECT SCOPE:

- 1) Ho:YLF laser from Q-peak delivers tens of mJ in 2 ps at $\lambda = 2\mu m$.
- 2) SPPS wiggler refurbished by Argonne for interaction at 2 um. 6-period, variable gap, K up to 52!!
- 3) Build laser room and transport line to LTU.
- 4) User SXRSS chicane to compress.

PROJECT GOALS:

- generate sub-fs multi-eV (>3) pulses
- apply to two-color FELs for sub-fs pump/probe

The XLEAP Project

- Passed CDR in February 16 and received final approval in May 16.
- 2.1 M\$ over 3 years.

	FY16				FY17				FY18			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
-PURCHASE/TEST LASER. -TIMING HW.												
PROCUREMENT (EVERYTHING ELSE)												
INSTALLATION						1 st SHUT	DOWN					
COMMISSIONING												
PROOF-OF-PRINCIPLE EXP												STAR SHUT

Chirp-Taper with Space-Charge

SLAC

HUGE BANDWIDTH WHEN COMPENSATING CHIRP WITH TAPER! (Simulations at 520 eV)

Pulse length measurement: Angular Streaking

Courtesy of N. Hartmann To be published Use IR circularly polarized laser to streak photo-electrons from XLEAP pulse.

SLAO

Pulse duration $<< \lambda_{laser}$ No need for ramped amplitude...

Angular width <-> pulse duration

Detection: VMI + 2-D electron detector? Cookiebox?

Sub-fs Pump/Probe with Two-Color XLEAP

Double Pulse Train

STUDY SHORT-LIVED EXCITED STATES (E.G. CHARGE MIGRATION FROM CORE-EXCITED STATE)

Conclusions

- XLEAP project approved and on its way.
- Installation during 6-month shutdown 2017
- Commissioning and proof-of-principle experiments in the following 12 months
- Goal: Sub-fs pulses with multi-eV bandwidth
- Path to sub-fs pump-probe using two-color in combination with XLEAP