Optics@LCLS

New HOMS The very big **NanoX** The very small

Mirror upgrades for LCLS and LCLS-II

X-ray mirror upgrade motivation

 Substantial improvement in HXR near-field quality & overall beam transport efficiency

Mirror system overview

SLAC

Multi-circuit cooling system - designed, assembled and tested in house

"Distortion Free" substrate mount

Vacuum and high precision support/motion system built to specification by external vendor

Multi-circuit cooling scheme

The mirror is cooled from one side through a Galn eutectic filled trough 5 mm from the optic surface. An additional notch is added 20 mm from the surface to minimize the thermal bump and provide mounting features.

Five cooling circuits (3 lengths) are used to best match the FWHM beam footprint for the full energy range

Energy Range (eV)	Cooling Footprint (mm)
< 400	700
~ 400 - ~ 800	300
> 700	100

Future development:

REAL (Resistive Element Adjustable Length) Cooled Optics

Cooled KB mirrors with dynamic bending

 Substrate is "side-cooled" through Galn interface

Nano-X for LCLS

Anne Sakdinawat, Georgi Dakovski, Andrew Aquila, Dan DePonte, Yiping Feng, Don Gardner, Hae Ja Lee, Yanwei Liu, Bob Nagler, Bill Schlotter, Fan Zhou, Diling Zhu

Nano-X interfaces broadly with SLAC's science programs

Nano-X draws providing a flexible environment and precision tools for new nanoscience-based solutions to serve the SLAC community.

Nano-X for X-rays

Optics for spatial and temporal control of x-rays, injectors, collimators, beam metrology

SLAC

Nano-X for Biology

Injectors for single particle imaging, Optics for coherent diffractive imaging, neuroprobes, advanced optics for multi-scale imaging

Nano-X for Chemistry

On-chip *in-situ* and *in-operando* platforms for interface chemistry, advanced spectroscopy at FELs/synchrotrons

Nano-X for Materials

Theory-guided materials and nanosystems fabrication, devices and materials for energy storage and conversion

Nano-X Toolset: Fast, Flexible Nano and Micro Fabrication

The Nano-X Toolset is aimed towards providing SLAC's scientific community with *rapid nano-prototyping* capabilities.

Metallization/Materials

deposition: ebeam evaporation, sputtering, atomic layer deposition, electroplating, electroless plating

Etching: wet etching, reactive ion etching

Metrology: FIB/SEM, visible light microscopy, profilometer, interferometric thin film measurement tools, ellipsometer, AFM/MIM **Lithography:** direct write electron, ion and photon beam lithography systems, laser cutter, microfluidics printer

Wavefront Measurement

Ronchi Sensors

Yanwei Liu, Bob Nagler SLAC

Holographic sensors

Off-axis zone plate/arrays

Multi-plane diffractive sensors

Blanchard and Greenaway, Applied Optics 1999

What optics and nanostructures will be necessary during LCLS-II instrument commissioning?

Coherence measurements

- Array of single-shot apertures
 Pinholes and redundant arrays
- High aspect ratio fabrication methods being explored for high energies as well as reflective

Wavefront measurements

Toward single-shot wavefront measurement

Hartmann sensors

High asspect ratio for tender and hard x-ray Hartmann sensors being developed

Structured Shack-Hartmann

> Improvement of dynamic range, resolution

X-ray Beam Shaping Optics

Flat-top Beam Shaper for Isochoric Heating of Samples using X-rays

Uniform heating of a sample over its volume allows for comparison with theoretical models that assume a single temperature and density throughout the material.

Optics for Imaging and Interferometry

Structured illumination beam shaper for coherent imaging methods

X-ray focal spot @ 800 eV

In collaboration with Stefano Marchesini, LBL

Spiral Interferometry

SLAC

Furhapter, et.al. Opt. Lett. 2005

Possible Collaboration Topics

- Diffractive "concentrators" for arrival time diagnostics and spectrometers
- Soft x-ray XAS with diffractive optics
- Diffractive optical elements to generate orbital polarized beams.....diagnostics???
- Wavefront sensor development...invasive and noninvasive.
- > In situ cleaning methods for optical surfaces

END