

Self-Seeding implementation at European XFEL

Shan Liu, DESY

on behalf of the HXRSS collaboration team

- **HXRSS simulations**: G. Geloni, V. Kocharyan, E. Saldin, S. Tomin, S. Serkez et al.
- Monochromator: H. Sinn, X. Dong, L. Samoylova, T. Wohlenberg, D. Shu (ANL), V. Blank (TISNUM), S. Terentiev (TISNUM) et al.
- Chicane magnets and girder: W. Decking, S. Liu, T. Wohlenberg, B. Krause, A. Petrov, N. Golubeva, C. Engling et al.

Why Hard X-Ray Self-Seeding (HXRSS) at European XFEL?

HOW HXRSS designed at European XFEL?

- What are the challenges for HXRSS?
- Summary and discussions

European

XFEL HXRSS at European EXFEL

G. Geloni, V. Kocharyan, E. Saldin (DESY 10-133)

SASE2 line (3 keV -25 keV) will be first equipped with HXRSS

- High repetition-rate
- Long undulators → HXRSS+tapering

Simulations: (1) HXRSS – 9 keV – taper, (2) HXRSS – 14.4 keV- 2nd harm. bunching – taper

	Photon energy, [keV]	Integrated flux, [Ph/ pulse]	Photon pulse BW	Photon Flux, [Ph/s/meV]
w/o HXRSS	9	7e11	$\Delta\lambda/\lambda$ ~1.2e-3 or ~12eV	1.5e12
w/ HXRSS ⁽¹⁾	9	7e12	$\Delta\lambda/\lambda$ ~1e-4 or ~940meV	2.1e14
w/o HXRSS	14.4	1e11	$\Delta\lambda/\lambda$ ~1.6e-3 or ~20eV	1e11
w/ HXRSS ⁽²⁾	14.4	9e11	$\Delta\lambda/\lambda$ ~7e-5 or ~1eV	4e13

(1) G. Geloni, V. Kocharyan and E. Saldin DESY 15-141; (2) O. Chubar, G. Geloni et al. J. Synchrotron Rad. 23 (2016).

Shan Liu

Self-Seeding implementation at European XFEL

XFEL HXRSS Simulations

XFEL Challenges for HXRSS

HXRSS performance drops at high energies due to

- Spatiotemporal coupling for low Miller indexes
- Larger equivalent SASE shot noise to beat
- Longer gain length →increase # modules before HXRSS can improve the situation

Heat load on crystals by spontaneous radiation also increases!

100pC – 17.5 GeV – C004 – 12keV – 5th stage

XFEL Monochromator Design: pitch oscillator

High repetition rate: 27000 bunches/s Heat load is an issue!

- Spontaneous emission radiation has a broad energy spectrum, it is considered as the main source of heat load.
- Calculated total energy deposition from spontaneous emission: ~ 6 µJ.

- Pitch oscillator will be treated as option (space foreseen and some development within design contract).
- Oscillate bragg angle can be used to compensate temperature cycle during pulse train.

- View window for reflected signal detected by YAG screen: window angle at 90° ±33.5° view covers all the reflections
- Two crystals with different orientations on one holder

8

XFEL HXRSS Chicane design

*A. A. Lutman et al., PRL 110, 134801 (2013) ** Toru Hara et al., Nature communications 4 (2013)

XFEL Chicane Design: maximum delay

9

436 fs max. delay can be achieved

at European XFEL for <11.6 GeV beam

Chicane chamber center is shifted to insure a maximum offset of 15 mm

XFEL Chicane Design: minimum delay

European XFEL HXRSS with 450 times higher duty cycle than LCLS

LCLS HXRSS: diamond is 2.5 mm from beam center

Seeding Power

XFEL Undulator damage: GEANT4 simulations

HXRSS+7 undulators+HXRSS+18 undulators

Shan Liu

* A. Fasso, Dose Absorbed in LCLS Undulator Magnets, I. Effect of a 100 µm Diamond Profile Monitor, RP-05-05, May 2005.

XFEL Critical number of electrons

- 13
- Maximum neutron flux allowed for 0.01 % demagnetization of Nd-Fe-B magnets: 1x10¹¹ n/cm² *.
- Assuming 0.01% demagnetization in 20 years with 10 shifts (8 hours each) /month for HXRSS operation, the maximum allowed number of e⁻/bunch (with 27000 bunches/s):

 $N_{max} = 1x10^{11}/20x12x10x8x60x60x27000x10^{-7} \approx 5x10^{5} e^{-7}/bunch$

- Maximum charge per bunch: $1nC \approx 6.25 \times 10^9 e^{-1}$ bunch
- Maximum horizontal beam size in undulator section: $\sigma_x \approx 50 \ \mu m$

If there is no halo, the crystal can enter as close as $\sim 4\sigma_x \approx 200 \ \mu m$ to a gaussian beam core with above mentioned conditions!

<u>What if there is 100 σ_x of halo?</u>

*M. Santana Leitner, et al, Radiation Protection Studies for LCLS Tune Up Dump, SLAC-PUB-14020, 2010. *J. Alderman, P.K. Job, R.C. Martin, C.M. Simmons, G.D. Owen, and 0 J. Puhl, Radiation-Induced Demagnetization of Nd-Fe-B Permanent Magnets, Advanced Photon Source Report LS-290 (2000).

Shan Liu

XFEL Collimation System Design

* V.Balandin, R.Brinkmann, W.Decking, N.Golubeva, TESLA-FEL 2007-05

European XFEL

EL Beam Delivery Simulation (BDSIM) and Optics Comparison

───**┛╎**┛╿╍║┥┦╝╎┛╎┛╎┙┥╸┥

First simulations are performed with 10⁵ e- with ±50σ uniform distribution in (x,x',y, y') phase space and with R=2 mm collimator aperture

- Effects from sextuples are not considered for the first simulations.
- X and Y coordinate are exchanged in the simulations. *I. Agapov, et al, NIMA:606.3 (2009): 708-712.

-> can be compared with the BLM measured results in the upcoming commissioning.

European Secondary e- @ main collimators XFEI

18

FEL Primary e- distributions @ main collimators

xp COLM#1 COLM#2 COLM#3 COLM#4 CO

> 0.015 0.02 xp, [rad]

Primary particles within ~ $\pm 20\sigma_{x,xp}$ & ~ $\pm 35\sigma_{y,yp}$ can pass the collimators with 2 mm apertures freely;

 Almost no primary halo particles left beyond the 2 mm aperture after the 4th collimator-> in this case,
the crystal can be inserted up to a distance of ~2 mm to the beam core (~13 fs of minimum delay) !

Vertical distribution

Shan Liu

European

8th Hard X-ray FEL Collaboration Meeting, Pohang, Korea, 24-26 Oct. 2016

0

0.005

0.01

XFEL Summary and discussions

- HXRSS + tapering enable specific high-brightness applications -> simulations are on-going to finalize the location of the 2 HXRSS stages;
- Energy shift due to heat load on diamond -> can be compensated by pitch oscillator
- Issue of beam halo and radiation damage-> can be studied by simulations with different beam halo distributions and compared with beam loss/halo monitors measured results in the future -> important for HXRSS, corrugated structure with very small gaps (~1.4 mm planed at European XFEL) similar for LCLS-II.
- > HXRSS project Schedule:
 - Present status: chicane (magnets, vacuum chamber, girder) and monochromator chamber design completed, components ordered
 - End 2016: final design of monochromator
 - End 2017: Two HXRSS mono ready for installation
 - 2018- Installation

Thank You!

- Thanks to I. Agapov, V. Balandin, W. Decking, G. Feng, L. Froehlich, G. Geloni, N.Golubeva et al. for helpful information and discussions!
- Thanks to colleagues from LCLS for sharing the HXRSS design and operation experiences!
- Thanks to S. Boogert and L. Nevay (RHUL) for the support on BDSIM!

Back Up...

Shan Liu

Self-Seeding implementation at European XFEL Ultra-High Resolution Inelastic X-ray Scattering UHRIX at 9 keV

Shan Liu

European

8th Hard X-ray FEL Collaboration Meeting, Pohang, Korea, 24-26 Oct. 2016

22

XFEL Energy Range and Reflections

Self-Seeding implementation at European XFEL

23

the FEL BW with +/- 3 degrees in yaw (and roll) with angular steps of 20murad

Shan Liu

XFEL Crystal Thickness

Thickness optimization relates to

- 1) Crystal impulse response
- 2) Minimal delay achievable
- 3) Heat loading issues (due to absorption)

Courtesy of G. Geloni

XFEL Chicane Design: Functions

Functions of chicane:

- Create an offset between the electron bunch and the monochromator
- Wash out the SASE micro-bunching produced by the upstream undulators
- Produce an adjustable delay for the electron bunch to match the seed x-ray
- Correcting the phase error introduced by removing one undulator segment
- Scan the FEL photon pulse to obtain the length of the pulse
- Produce two color SASE pulses

- Worst case scenario with 27000 bunches with 1 nC at 17.5 GeV
- Planned operation far below the dump power threshold (300 kW) : max. 13500 bunches with1 nC at 17.5 GeV.
 - Water cooling may be added

Shan Liu

8th Hard X-ray FEL Collaboration Meeting, Pohang, Korea, 24-26 Oct. 2016

102.41 97.416 92 425

87,435 82 444 77,454 72.463

67,473

62 482 57,492 52,501

47,511 42,521 37 53 M

20.000 (mm)

26

XFEL Chicane Main Parameters

Parameters*	Symbol	Normal	Minimum	Maximum	Unit
Electron beam delay	∆t	48.4 -100	0	192.2	fs
Electron beam offset	Δy	5-7.2	0	10	mm
Width of good field range	Wg	20	10	-	mm
Deflection angle	θ	3.1 – 4.4	0	6.2	mrad
R56	R ₅₆	29 - 60	0	115.3	μm
Dipole field	B ₀	0.60 - 0.87	0	1.2	Т
Integrated field strength	∫Bdl	0.18 – 0.26	0	0.36	T∙m
Magnet yoke length	L _b	0.3	-	-	m
Magnet vertical gap	g	16	-	-	mm
Vacuum chamber width	W	27	-	-	mm
Distance between outer	ΔL_a	1.315	-	-	m
and inner magnets					
Distance between inner	ΔL_{c}	1.02	-	-	m
magnets					
Nominal current	I	175	-	-	А

*Parameters for 17.5 GeV beam

XFEL Chicane Design: Dipoles and Girder

Provided by B. Krause

- 8 H-type dipole magnets will be delivered in March 2017
- Girder design completed -> ordered for fabrication

TECHNICAL PARAMETERS

Basic parameters

PARAMETERS		VALUE
1. Magnetic field, T		1,2
2. Air gap height, mm		16
3. Yoke length, m		0,3
4. Integral field strength, Tm		0,36
5. Field quality ΔB/Bo (GFR- H8	xW10)	≤±1x10
Excitation parameters		
	VA	LUE
DARAMETERS		Corroo

	VALUL		
PARAMETERS	Main winding	Correctin winding	
1. Nominal current, A	175	10	
2. Nominal voltage , V	10,3	1,1	
3. Resistance (t=293 K), Ohm	0,059	0,11	
4. Operation mode – continuous			

Winding parameters

	VALUE		
PARAMETERS	Main windin	g Correcting winding	
1. Number of coils per magnet	2	2	
2. Number of turns per coil	48	21	
3. Number of turns per magnet	96	42	
4. Average turn length, m	0,92	0,91	
5. Conductor dimensions, mm	6x6–ø3,5	1,8x3,55/1,9x3,65	
6. Conductor cross-section area, mm ²	25,8	6,03	
7. Static inductance at nominal current, H	0,021		
8. Electrical strength of coil system, kV	2,0		

Cooling parameters

PARAMETERS	VALUE
1. Water overheating, °C	6,5
2. Cooling water pressure drop, MPa (bar)	0,4(4)
3. Cooling water requirements, I/min	4,1
4. Number of cooling circuits	4

Weight

	VALUE		
PARAMETERS	Main windin	g Correcting winding	
1. Yoke steel weight, kg	1	16	
2. Winding copper weight, kg	20,4	2,2	

Designed by C. Engling

XFEL Input electron beam distribution

uniform distributions

Self-Seeding implementation at European XFEL

betx=93.554; bety=50.482; alfx=4.857; alfy=-2.389; ex=2*Nsig*5.31e-11; ey=2*Nsig*1.89e-11; deltaE/E=1.5%. • The Courant-Snyder invariant can be expressed as:

$$\tilde{x}^2 + \tilde{x}'^2 = \gamma x^2 + 2\alpha x x' + \beta x'^2 = \frac{\varepsilon}{\pi}$$

with the normalized variables:

$$\tilde{x} = \frac{x}{\sqrt{\beta}}$$
 and $\tilde{x}' = \frac{d\tilde{x}}{d\phi} = \sqrt{\beta}x' + x\frac{\alpha}{\sqrt{\beta}}$,

 (\tilde{X}, \tilde{X}') and (\tilde{Y}, \tilde{Y}') are enlarged by N times with uniform distributions.

Š

* Keep in mind that horizontal and vertical planes are exchanged in the simulation

Shan Liu

30

