Two Bunches in Two RF Buckets Setups for Different Experiments

- F.-J. Decker, W. Colocho, A. Lutman, J. Sheppard, 25-Oct-2016 S. Vetter, S. Gilevich, [J. Turner, J. Lewandowski]
- 1. There were four experiments in 2016 (May, June, July, Oct) which had two bunches with up to 122 ns separation
- 2. What was done for the two different setups of pump-probe and probe-probe

Outline

- Lasers
- Bucket Control
- RF
- BPMs
- Measurements
- Photon measurements
- Summary

Lasers: Coherent 1 and 2, Laser Heater 1 and 2

- "Mirrors" M19 and MH5 are now beam combiners
 - controls also overlap [too coarse, need pico-motors] no: just dead band number $5 \rightarrow 1 \,\mu m$
- Coh 1 WP (wave-plate), LH 1 WP and LH1 Delay
 - added for independent intensity control
- Shutters to suppress one or the other (or ...)

SL AC

Two Bunch Critical Parameter Display: Sum and Single

	Two Bunch Difference			
		Microns	W. C	
	BPMS:IN20:731X	-46		
	BPMS:LI21:233X -	-670		
	BPMS:LI24:801X -	-967	Tin	
	BPMS:LTU1:250X ·	-298	IN	
	BPMS:DMP1:693X	-345	Lla	
or 0.5 – to turn off	Requested Buc Vitara1	ket Delay Vitara 2		
	→ 0	1143	ВС	
	0.00000 buckets	-1142.99917 buc	LT	
	Bucket Difference	1143 0 Buckets	DN	
	Bucket Billerence	400.05 n-sec		

	.,	SLAG		
olocho Sample and Hold				
	Coherent 1	Coherent 2		
BPM 2 TMIT	243 pC	242 pC		
ne Interval IN20	-0.093 ns	400.138 ns	E at:	
20 731 X	0.025 um	0.360 um	DL1	
21 233 X	-35.920 um	-355.739 um	BC1	
1 Peak I	141.547 A	174.659 A		
24 801 X	273.829 um	1218.478 um	BC2	
C2 Peak I	4496.995 A	1107.968 A		
U1 250 X	-395.747 um	-480.168 um	2 וח	
dP1 693 X	3727.674 um	0.000 um		

-SLAC

Coh 2 only - Coh 1 only (0 bucket each)

RF Longer Pulse Separations, SLED vs. UnSLEDed

- Most RF is lengthened to allow 150 ns bunch separation
 - (L0B 1.8 µs (needs 2 µs), Gun and L1X need double pulse for longer separations)
- SLEDed RF in L2 and L3 needs timing adjustment about half of bunch separation e.g.: 200 ns would require +100 ns on PSK_L2 and PSK_L3
- A long range PSK scan revealed that up to 1100 ns might be possible with SLEDed setup
- UnSLEDed will give about 1/1.65 less energy (e.g.: 6 instead of 10 GeV) corresponds to 4 instead of 11 keV

Gun RF Flattened

- RF should be flat for about 200 ns (maybe till 400 ns o.k.)
- Further fine adjustments necessary
- Longer delay requires double pulsing like L1X

SLAC

Two Buckets

RF Waveform Modification to Adjust Phase and Amplitude of Second Bunch (e.g.: L1X)

Long-range Transverse Linac Wakefields

K. Bane

 The biggest transverse kick should be at about 2 ns

Long-range Timing Scan of Two Bucket Separation

- Gas detector sees rapid up-down (two bunch (4 mJ) then one bunch (2mJ) lasing) consistent with 4.3 GHz transverse mode
- [Every 14.7 ns (= 1/68 MHz) there is a jump (or need to wait longer in scan)]
- Time beyond 25 ns require additional tuning
- We use this to bring both beam together with L2 launch set points 0.5

Two Buckets

BPM Response at Low Measured Charge Questionable

- Measured beam trajectory o.k. if measured charge is >30% sum of real charges: 0, 7, 14, 21, 28, ... ns [Just don't ask for 10 ns separation]
- Why does it change for different measurements? [Coh 1 vs. Coh 2] Why does slope near zero change?
- [Bunch separations at low charge points should be with FBs off (or regold)]

Two Buckets

Measurement Diagnostics: XTCAV

- XTCAV and OTRDMP show energy (equal) and lasing
 - Good lasing in both bunches

Coh 1 (right) barely lases

Measurement Diagnostics: Gas Detector

 Gas Detector can measure intensity at hard x-ray and long delays (41 ns)
 tricky at 1.2 keV (31 ns)

Photon Experiments and their Demands

C. Stan, water droplets, May 2015, MEC, 8.9 keV LI41: diff.: t, E, I, y; same y'(x, x'), s.p. 25 ns M. Seaberg, skyrmions, May 2016, SXR, 1.2 keV LM23: diff.: t only 0.7, 4.6, 23, 49 ns P. Fuoss, probe-probe, Jun 2016, XCS, 8.2 keV LL25: diff.: *t* only mono, 4.6, 8.8, 24 ns I. Schlichting, proteins, Jul 2016, CXI, 7.1 keV LM18: diff.: *t*, *E*, *y*; same *y'*, *l*, (*x*, *x'*), s.p. 8.4 ns Y. Feng, GDET >122 ns, Oct 2016, XCS, 7.0 keV X119: diff.: *t* only, high *l*; same *x*, *y*; o.k. *E*, 122 ns

Pump-probe

Probe-probe

Gas Detector with 1:10 intensity

Profile Monitor CAMR:FEE1:441 17-May-2015 19:26:40

Vertical Bunch Separation with TCAV3 (which is off-frequency)

- Initially there was a 3.6 Hz line causing a huge jitter (red).
- This line got eliminated (blue) by running with somewhat higher RF amplitude and miss-timed.

 ^{GDET:FEE1:241:ENRC}
 ^{GDET:FEE1:241:ENRC}
 ^{COT coef = -0.08}
- Since there is a vertical separation, both bunches are lasing off the peak in the center of the undulator
- Both bunches have equal peak performance (2 mJ)

Same parameters or un-intendent differences

- Often the other parameters except time should be the <u>same</u>: *E*, *I*, *x*, *x'*, *y*, *y'*, σ_x , σ_x' , σ_y , σ_y' , source point, bunch length, ...
- Difference in e.g.:
 - Bunch length:
 - Phase (?)
 from XTCAV
 - Source point?

Profile Monitor OTRS:DMP1:695 17-May-2015 19:26:33

Two Buckets

Measurement Diagnostics: Photon MCP Multi Channel Plate

0.008

0.006

0.004

0.002

si ac

0.7 ns

- Even two bucket 0.7 ns could be measured
- Used for equalizing intensity and correlation

Quantifying FEL Intensity of each of Two Bunches

Gas detector raw waveform

Blue is the combined signal of two bunches with 23.8 ns separation (68 buckets). By subtracting a fitted single bunch response (red) the signal of the second bunch gets achieved (green). $x_{10}^{\text{Two Bunches with 68 Buckets Sepa}}$

Fast diode signals at experiment

Fast diode signal helps to identify: intensity, steering and energy issues

Fast diode signal: anti-correlation (orbit diff.)

L-shaped (energy diff. + monochromator)

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.1

Post:Ayl 1

0.12

More Differences: divergence and spot size (or mode)

Summary

 Besides "Two-Buckets" (0.35 to 200+ ns) we have also "Twin Bunches" and "Fresh Slice" setups (both 120 fs (hard) to 900 fs (soft x-rays))

- Pump-probe "typically" requires a few other different parameters beside Δt : ΔE , Δy , (ΔI)
- Probe-probe "typically" just Δt and mono-chromatic beams
- Many "<u>equal</u>" parameters have to be watched:
 E, *I*, *x*, *x*', *y*, *y*', *σ*_E, *σ*_I, *σ*_x, *σ*_x', *σ*_y, *σ*_y', source point, bunch length, ...
- To Do List:
 - Get betatron phase advance adjustment from TCAV3 to undulator source point
 - BPM raw signal into two-bunch difference orbit
 - + seeding
- Longer delays and reliable transverse adjustments (kickers?)
 Two Buckets

