Pulse-by-pulse control of linear accelerator at SACLA

Hitoshi Tanaka XFEL R&D Division, RIKEN SPring-8 Center

Outline

- 1. Why pulse-by-pulse control required?
- 2. R&D overview and time schedule
- 3. Present status
- 4. Summary

5 XFEL BLs potentially Installable

A pulse-by-pulse parameter change enabling standardization of undulator segments

Ring-based SR source in the campus

A pulse-by-pulse parameter change enabling use of the SACLA linac as a high performance injector to SPring-8-II

1. Why pulse-by-pulse control required?

2. R&D overview and time schedule

3. Present status

4. Summary

R&D Outline

Fiscal Year

- 1. Why pulse-by-pulse control required?
- 2. R&D overview and time schedule
- 3. Present status
- 4. Summary

3.1 Towards full performance multi-XFEL BLs pulse-by-pulse operations

3.2 Pulse-by-pulse accel. param. control

Ethernet based "event information" delivery system

- 1. Bunch length control by changing the setting phase through DAC
- 2. Beam energy control by trigger ON/OFF for HV Mod. through TDU
- 3. Beam root control based on a virtual machine concept

3.2.1 Beam energy pulse-by-pulse control

At first, by simple trigger ON/OFF switching for each acceleration unit after BC3, beam energy is changed with a resolution of about 200 MeV

Proof-of-principle experiments were done and this scheme has already released to SACLA routine operations

Physical Review Accelerators and Beams 16, 080701 (2013).

3.2.2 Bunch length pulse-by-pulse control

3.2.3 Beam root pulse-by-pulse control(1)

Boundary Condition

- 1. RF parameters and root switching magnets only changed in a pulse-by-pulse manner
- Even spaced beam pulses delivered to each XFEL BL
 →Easy data collection
- 3. Avoiding Interruption of XPP experiments using low repetition rate synchronous lasers by on-demand injections
- 4. In the first stage, on-demand parameter change is "Top-up injection only"
- 5. Experimental conditions using XFELs known beforehand
- 6. Frequency of on-demand injection less than 1 pps

3.2.3 Beam root pulse-by-pulse control(2) The above boundary condition

- Not so many root patterns
- Updating root information every 1 sec

Field strengths of switching magnets are changed according to the root information

Pattern	1	2	3	4	5	6	7	8	9	10	 60
BL3 60Hz	BL3	BL3	BL3	BL3	BL3	BL3	BL3	BL3	BL3	BL3	BL3
BL2 60Hz	BL2	BL2	BL2	BL2	BL2	BL2	BL2	BL2	BL2	BL2	BL2
BL2 15Hz, BL3 30Hz	BL2	BL3		BL3	BL2	BL3		BL3	BL2	BL3	BL3
BL3 60Hz, SR 1-shot	BL3	BL3	BL3	BL3	BL3	BL3	SR	BL3	BL3	BL3	BL3
BL2 60Hz, SR 1-shot	BL2	BL2	BL2	BL2	BL2	BL2	SR	BL2	BL2	BL2	BL2
BL2 15Hz, BL3 30Hz, SR 1-shot	BL2	BL3	 8th)	BL3	BL2	BL3	SR	BL3	BL2	BL3	BL3

3.3 Timing synchronization(1)

Synchronizing SACLA beam extraction timing to specified RF bucket of the Storage Ring

3.5 Timing synchronization(2)

Prototype of the synchronization system tested at SACLA.

- Timing jitter of 1.2 ps rms obtained, which satisfies target value
- Small influence to the XFEL performance

Summary

- 1. So far no showstopper found and all R&D activities have well progressed.
- 2. Full-performance pulse-by-pulse XFEL operations with two BLs, BL2 and BL3 will be started in next spring.
- 3. Test beam injections from SACLA to the current storage ring will be performed in FT2018, prior to shutdown of the current SPring-8 accelerator complex.

Thank you for your attention!