Machine Learning at LCLS

Oct 24, 2016

D. Ratner, A. Ahmed, T. Cope, J. Duris, S. Ermon, M. Gibbs, T. J. Lane, S. Li, T. Maxwell, M. McIntire, M. Mongia, N. Norvell, D. Sanzone, D. Schneider, C. Yoon SLAC National Accelerator Laboratory

Machine side:

Archive 200k variables at $1Hz \rightarrow 10^{12}$ data points so far Online optimization of ~30 dimensional space Alarm/anomaly/breakout handling

Big Data comes to Photon Science

User side:

LCLS: 120 Hz images \rightarrow 15 TB/hour LCLS-II: 100 kHz \rightarrow 1 PB/hour!

Big Data and AI at LCLS

 \rightarrow exascale computing initiative

Quads

3

Computer vision: biological imaging (C. Yoon)

C. Yoon, A. AbuHashem

Indexing and classification of nano-xtal images (Google Accelerated Science)

Computer vision: X-ray/electron beams (D. Schneider)

XTCAV electron diagnostic: best source of X-ray temporal info!

Computer vision: X-ray/electron beams (D. Schneider)

1) start with fully trained *ImageNet* based convnet

Computer vision: X-ray/electron beams (D. Schneider)

How to reconcile MHz beam and 120 Hz diagnostic?

A. Sanchez-Gonzalez, P. Micaelli

How to reconcile MHz beam and 120 Hz diagnostic?

SLAC

A. Sanchez-Gonzalez, P. Micaelli

How to reconcile MHz beam and 120 Hz diagnostic?

A. Sanchez-Gonzalez, P. Micaelli

Anomaly/Breakout detection (T.J. Lane)

Normal Jet (delivering sample)

Machine protection:

e.g. detecting ice to protect the detector

Data analysis: e.g. sorting shots

SLAC

Can we detect if something is broken or about to break?

- 200,000 PVs: no human can keep an eye on all of them
- Signals are complex: simple thresholds cannot work

Cathode QE drop caused hours of downtime. Breakout detection would have found change immediately!

M. Gibbs, N. Norvell, D. Sanzone

How to optimize 2km long machine?

SLAC

2015: 450 hand tuning hours, 250 dedicated! ⇒ Lots of opportunity to speed operations and relieve operator load

SLAC

Working with AOSD - Faster tuning, fewer errors

How to optimize 2km long machine?

SLAC

2015: 450 hand tuning hours, 250 dedicated! ⇒ Lots of opportunity to speed operations and relieve operator load

SLAC

Online optimization of quadrupole magnets

Online optimization

Tried several optimization approaches:

→ Gradient/simplex methods

(Nelder-Mead in general use)

Online optimization

Still many optimizers to try:

 \rightarrow Simulated annealing, genetic algorithms, etc.

SLAC

Bayesian approach: introduce probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Add probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Add probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Add probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Add probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Add probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Add probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Add probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Add probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Add probabilistic model

- \rightarrow create acquisition function
- \rightarrow more efficient search of high dimensional space

Covariance function: $k(x_1, x_2) = \theta e^{-(x_1 - x_2)^T \Lambda(x_1 - x_2)}$

Covariance function:
$$k(x_1, x_2) = \theta e^{-(x_1 - x_2)^T \Lambda(x_1 - x_2)}$$

observations
new point
to predict
$$\begin{bmatrix} \mathbf{y} \\ \mathbf{y}_* \end{bmatrix} \sim \mathcal{N} \begin{pmatrix} \mathbf{0}, \begin{bmatrix} K & K_*^T \\ K_* & K_{**} \end{bmatrix} \text{ new point}$$

$$K = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_n) \\ k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ k(x_n, x_1) & k(x_n, x_2) & \cdots & k(x_n, x_n) \end{bmatrix} K_* = \begin{bmatrix} k(x_*, x_1) \cdots & k(x_*, x_n) \\ K_{**} = k(x_*, x_*) \end{bmatrix}$$

taken from M. Ebner, GP for Regression ²⁹

Covariance function:
$$k(x_1, x_2) = \theta e^{-(x_1 - x_2)^T \Lambda(x_1 - x_2)}$$

Prediction of new point: $\overline{y}_* = K_*K^{-1}\mathbf{y}$ Variance of new point: $\mathrm{var}(y_*) = K_{**} - K_*K^{-1}K_*^\mathrm{T}$

taken from M. Ebner, GP for Regression ³⁰

Covariance function: $k(x_1, x_2) = \theta e^{-(x_1 - x_2)^T \Lambda(x_1 - x_2)}$

Acquisition function:
$$EI(x^*) = \int_{\tilde{y}}^{\infty} (y^* - \tilde{y}) P(y^* | x^*) dy^*$$
 best observed point

Similarity function:
$$k(x_1, x_2) = \theta e^{-(x_1 - x_2)^T \Lambda(x_1 - x_2)}$$

Acquisition function: $EI(x^*) = \int_{\tilde{y}}^{\infty} (y^* - \tilde{y}) P(y^* | x^*) dy^*$

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

J. Duris

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

SLAC

OcelotScan-2016-09-21-185122.mat

2-quad raster scan + Ocelot path

OcelotScan-2016-09-21-185122.mat CorrelationPlot-QUAD_LTU1_620_BCTRL-2016-09-21-185628.mat

J. Duris

Recent results

2-quad scan MMM Pulse energy 1.2 0.9 0.8 0.7 Iteration 20 100 120 **Device Monitor** QUAD-LIZE-SOL BCTRL Qaud values 20 40 60 80 100 120 0 Time (seconds) GP 2D Heatmap Help/Docs

Performance summary: Already as good as best human operators! Still many improvements to come...

FY16 end – Focused on completing most frequent tasks w/ fast ROI:

Time savings = Est. 103 min / wk
Goal = 210 min / wk
To date 49% of goal
(Evaluating actual integrated savings thru Dec.)

FY17 plan – (LFD, AOSD, EED)

- Further code standardization
- Completion of more involved A.I.'s: XTCAV, true emittance measure/model, E change management, still-faster inj. tuning
- Plans for LCLS device integration
- Extend machine-agnostic code to add'I SLAC accelerators

Tune		Tune time (m)	
Procedure	Past	Now	
Injector Tune	180	< 120	
Global Steering	6	< 1.5	
Und. Pointing	7	3	
Global Quad Optimization	20	7	
Mar	7 hours	† Algorit	

Comparison of FEL changes for different tunes

Future directions:

- Use ground truth to fit hyperparameters
- 2. Use archive/ground truth to introduce prior-mean
- 3. Expand to more complicated optimization problems (laser profiles, multi-objective functions, etc.)
- Incorporate physical parameters into the model (i.e¹ fit physical models, not blind tuning parameters.)

Future directions:

Hoping to develop international collaborations on shared online tuning algorithm for accelerators!

Thanks for your attention!

SLAC

Big thanks to people who did this work: A. Ahmed, T. Cope, J. Duris, S. Ermon, M. Gibbs, T. J. Lane, S. Li, T. Maxwell, M. McIntire, M. Mongia, N. Norvell, D. Sanzone, D. Schneider, C. Yoon