
Oct 24, 2016

D. Ratner, A. Ahmed, T. Cope, J. Duris, S. Ermon, M. Gibbs, T. J. Lane, 

S. Li, T. Maxwell, M. McIntire, M. Mongia, N. Norvell, D. Sanzone, D. 

Schneider, C. Yoon

SLAC National Accelerator Laboratory

Machine Learning at LCLS



2

Big Data and AI at LCLS

User side: 
LCLS: 120 Hz images  15 TB/hour 

LCLS-II: 100 kHz  1 PB/hour! 

 exascale computing initiative 

Machine side:
Archive 200k variables at 1Hz  1012 data points so far

Online optimization of ~30 dimensional space

Alarm/anomaly/breakout handling

Big Data comes to Photon Science
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Computer vision: biological imaging (C. Yoon)

C. Yoon

DESY, PS-I

Classification of single particle images

Indexing and classification of nano-xtal images (Google Accelerated Science)

C. Yoon, A. AbuHashem
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Computer vision: X-ray/electron beams (D. Schneider)
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XTCAV electron diagnostic: best source of X-ray temporal info!
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Computer vision: X-ray/electron beams (D. Schneider)

1) start with fully trained ImageNet based convnet

Millions

of 

images

Classifies a 1000

categories - cat, 

dog, bus, etc

Convnet figure from 

http://www.cs.toronto.edu/~frossard/post/vgg16/

2) spend only 3 hours

labeling just 200 images

3) train new

regression

heads on 

200 images 

4) Good 

results

http://www.cs.toronto.edu/~frossard/post/vgg16/
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250 labeled boxes

Regression Results:

Measurement of accuracy: for how many

shots is area of intersection/union > 0.5?

VCC Screen – only 0.09 (left)

YAG Screen – 0.89 (not shown)

Critical step: de-noising preprocessing

from Abdullah Rashed Ahmed

For VCC – high

variation in beam

Computer vision: X-ray/electron beams (D. Schneider)



How to reconcile MHz beam and 120 Hz diagnostic? 

Characterization 

from slow detector

Characterization 

from

slow detector 

LCLS II: Fast Machine Data

up to 1Mhz

Predict/Interpolate slow 

characterization with 

Machine Learning
A. Sanchez-Gonzalez, P. Micaelli



Photon Energy

Prediction error 

smaller than 0.3 eV

Spectral Shape

Agreements better 

than 0.97%

A. Sanchez-Gonzalez, P. Micaelli

How to reconcile MHz beam and 120 Hz diagnostic? 



2-pulse delays 

< 1.57 fs mean error

A. Sanchez-Gonzalez, P. Micaelli

How to reconcile MHz beam and 120 Hz diagnostic? 
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Anomaly/Breakout detection (T.J. Lane)

Machine protection: 

e.g. detecting ice to 

protect the detector

Data analysis: 

e.g. sorting shots



Anomaly/Breakout Detection

Can we detect if something is broken or about to break?

● 200,000 PVs: no human can keep an eye on all of them

● Signals are complex: simple thresholds cannot work

M. Gibbs, N. Norvell, D. Sanzone
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Cathode QE drop caused hours of downtime. Breakout 

detection would have found change immediately!

zoom



How to optimize 2km long machine?

Machine Tuning Automation

2015: 450 hand tuning hours, 250 dedicated!
⇒ Lots of opportunity to speed operations and relieve operator load



Machine Tuning Automation

Working with AOSD – Faster tuning, fewer errors

Injector setup procedures

Fast global steering

FEL optimization

FEL pointing



How to optimize 2km long machine?

Machine Tuning Automation

2015: 450 hand tuning hours, 250 dedicated!
⇒ Lots of opportunity to speed operations and relieve operator load



15

Online optimization

Online optimization of quadrupole magnets
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Online optimization

Tried several optimization approaches:

 Gradient/simplex methods

(Nelder-Mead in general use)

Slide from M. McIntire
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Online optimization

Still many optimizers to try:

 Simulated annealing, genetic algorithms, etc.

𝑇

Slide from M. McIntire
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Bayesian optimization

Acquisition point

Slide from M. McIntire

Bayesian approach: introduce probabilistic model 

 create acquisition function

 more efficient search of high dimensional space

Acquisition 

function

Ground truth

Posterior
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Bayesian optimization

Acquisition point

Slide from M. McIntire

Acquisition 

function

Ground truth

Posterior

Add probabilistic model 

 create acquisition function

 more efficient search of high dimensional space
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Bayesian optimization

Acquisition point

Slide from M. McIntire

Acquisition 

function

Ground truth

Posterior

Add probabilistic model 

 create acquisition function

 more efficient search of high dimensional space
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Bayesian optimization

Acquisition point

Slide from M. McIntire
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Add probabilistic model 

 create acquisition function

 more efficient search of high dimensional space
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Bayesian optimization

Acquisition point

Slide from M. McIntire
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function

Ground truth
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Add probabilistic model 

 create acquisition function

 more efficient search of high dimensional space
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Bayesian optimization

Acquisition point

Slide from M. McIntire
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 more efficient search of high dimensional space
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Bayesian optimization

Acquisition point

Slide from M. McIntire

Acquisition 

function

Ground truth

Posterior

Add probabilistic model 

 create acquisition function

 more efficient search of high dimensional space



25

Bayesian optimization

Acquisition point

Slide from M. McIntire
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Bayesian optimization

Acquisition point

Slide from M. McIntire
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Bayesian optimization

Acquisition point

Slide from M. McIntire

Acquisition 

function

Ground truth

Posterior

Add probabilistic model 

 create acquisition function

 more efficient search of high dimensional space



28

Gaussian Process Optimizer

Gaussian process: instance based learning method

Covariance function:

zb

za

x1

x2

x3

x*

y* = f(x*) 

= f(za,zb, za*zb, …)
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Gaussian Process Optimizer

Gaussian process: instance based learning method

Covariance function:

observations

new point

prior mean

new point 

to predict

taken from M. Ebner, GP for Regression
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Gaussian Process Optimizer

Gaussian process: instance based learning method

observations

new point

prior mean

new point 

to predict

Prediction of new point:

Variance of new point:

Covariance function:

taken from M. Ebner, GP for Regression
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Gaussian Process Optimizer

Gaussian process: instance based learning method

observations

new point

prior mean

new point 

to predict

Acquisition 

function:

Covariance function:

best observed point
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Gaussian Process Optimizer

Gaussian process: instance based learning method

Observations Model Expected Improvement
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Similarity function:

Acquisition function:



Point 2

OcelotScan-2016-09-21-185122.mat J. Duris
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Point 11
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Point 12
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Point 13
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Point 14

OcelotScan-2016-09-21-185122.mat J. Duris



Point 15

OcelotScan-2016-09-21-185122.mat J. Duris



2-quad raster scan + Ocelot path

CorrelationPlot-QUAD_LTU1_620_BCTRL-2016-09-21-185628.mat
OcelotScan-2016-09-21-185122.mat

FEL 

(mJ)

J. Duris



Recent results

2-quad scan 12-quad scan
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Hand 

tuning

Simplex Ocelot GP Ocelot

All runs 25 (30) uJ 72 (50) uJ 95 (51) uJ

Infrequent tuning (>20 

mins since last tune)

39 (38) uJ 128 (90) uJ 38 (62) uJ

Means (and medians in parentheses) FEL 

change during tune

~3x better 

than hand 

tuning

~4x better than 

hand tuning

Performance summary: 

Already as good as best human operators!

Still many improvements to come…

J. Duris

Machine Tuning Automation



Machine Tuning Automation

FY16 end – Focused on completing most frequent tasks w/ fast ROI:

Time savings = Est. 103 min / wk

Goal = 210 min / wk

To date 49% of goal

(Evaluating actual integrated savings thru Dec.)

FY17 plan – (LFD, AOSD, EED)

• Further code standardization

• Completion of more involved A.I.’s: XTCAV, true emittance 

measure/model, E change management, still-faster inj. tuning

• Plans for LCLS device integration

• Extend machine-agnostic code to add’l SLAC accelerators

Tune time (m)

Procedure Past Now

Injector Tune 180 < 120

Global Steering 6 < 1.5

Und. Pointing 7 3

Global Quad 

Optimization
20 7

J. Duris, D. Ratner, T. Maxwell



Comparison of FEL changes for different tunes

Future directions:

1. Use ground truth to fit hyper-

parameters

2. Use archive/ground truth to 

introduce prior-mean

3. Expand to more complicated 

optimization problems (laser 

profiles, multi-objective 

functions, etc.)

4. Incorporate physical 

parameters into the model (i.e. 

fit physical models, not blind 

tuning parameters.)

S. Li

Y. Nosochkov, LCLS-II



Comparison of FEL changes for different tunes

Future directions:

Hoping to develop international collaborations on shared 

online tuning algorithm for accelerators!

Thanks for your attention!

Big thanks to people who did this work: A. Ahmed, T. Cope, 

J. Duris, S. Ermon, M. Gibbs, T. J. Lane, S. Li, T. Maxwell, 

M. McIntire, M. Mongia, N. Norvell, D. Sanzone, D. 

Schneider, C. Yoon


