PAUL SCHERRER INSTITUT

Florian Loehl :: Paul Scherrer Institut

Experience with high power RF sources and RF conditioning

8th Hard X-ray FEL Collaboration Meeting 24 - 26 October 2016, Pohang, Korea

- Types of RF systems in SwissFEL
 - S-band
 - C-band
 - X-band
- Some first experiences
- Discussion topics:
 - 1. Humidity of transformer oil
 - 2. 'Strange' pulses from klystrons
 - Experience with evacuation of transformer tank
 ...

Types of RF systems in SwissFEL

	S-band	X-band										
LLRF	Fully digital LLRF sys	Fully digital LLRF systems (presented at 2014 meeting)										
Drive amplifiers	Solid-state: Microwave Amplifiers	Solid-state: Advantech	Currently TWT amplifier, plan to upgrade to solid- state eventually									
Klystrons	Thales TH2100L	Toshiba E37212	SLAC XL5									
Modulators	<i>Solid-state</i> ScandiNova K2 from test facility	Solid-state Linacs 1&2: Ampegon Type-µ Linac 3: ScandiNova M1071	<i>Solid-state</i> ScandiNova K2 from test facility									
Waveguides	<i>SF₆</i> Mixture: MEGA, PSI,	<i>Vacuum</i> MHI-MS Loads: CML	<i>Vacuum</i> CERN, PSI, Nihon Koshuha									
Structures	PSI RF gun 1-2 x RI 4m S-band	PSI BOC + 4 x PSI C-band	CERN-PSI-Elettra X-band (2x)									
	bake-out	no bake-out	bake-out									

S-band

- Re-use of Microwave Amps. amplifiers from injector test facility
- Initial stability: ~ 150 ppm
- Modified by PSI (group of C. Gough) in order to reach ~50 ppm

C-band

- Advantech won the tender
- Collaboration with PSI in order to achieve stability requirements
- Stability results of prototype: < 50 ppm, < 1 fs add. timing jitter

Sophisticated measurement system developed by C. Gough group to characterize amplifiers with ~10 ppm precision.

Two prototypes were tested at PSI for evaluation of the series.

50 MW / 3µs RF, 370kV / 344A / <20 ppm voltage stability pulse to pulse @ 100 Hz

AMPEGON

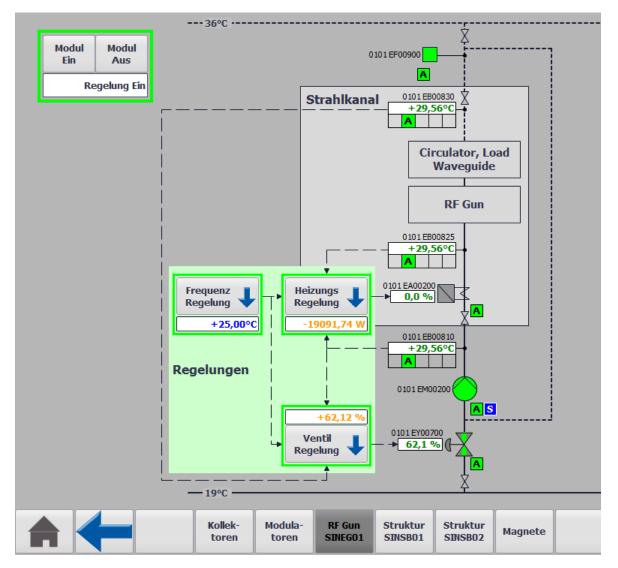
Type-µ modulator prot. for PSI C-band K2-3 proto. for PSI C-band

- 13 modulators (Linac 1, Linac 2)

- Installation planned from Nov. 2016 – June 2017

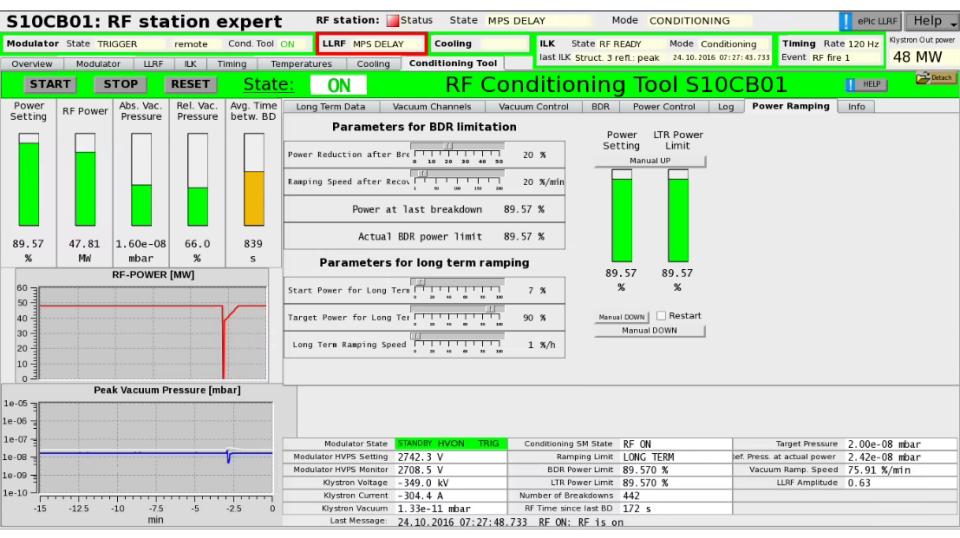
ScandiNova

- 13 modulators (Linac 3)
- Installation planned from March 2016 Sep. 2017

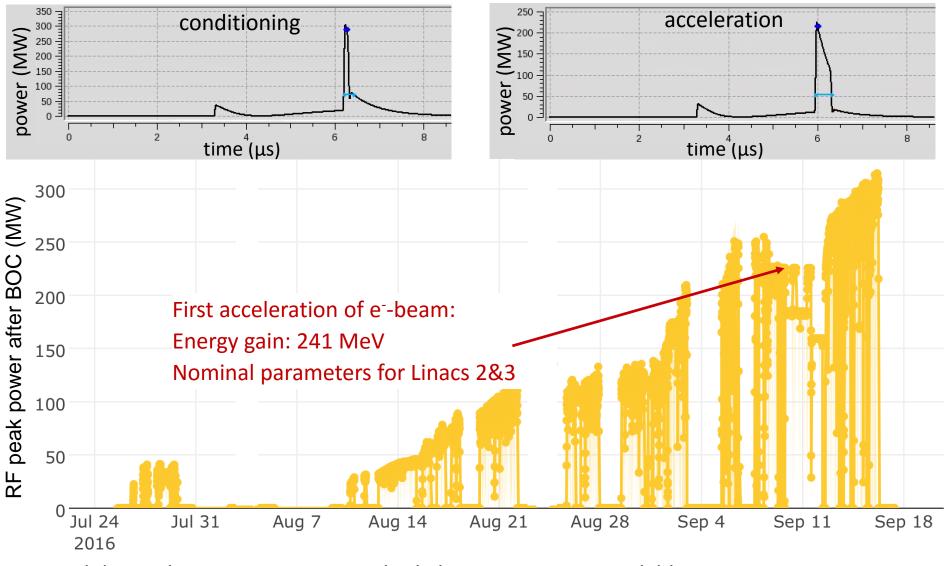


Power source of first C-band station (Ampegon prototype modulator)

Precision temperature control



Few mK stability by combination of 3 coupled feedback-loops, including an RF-based measurement



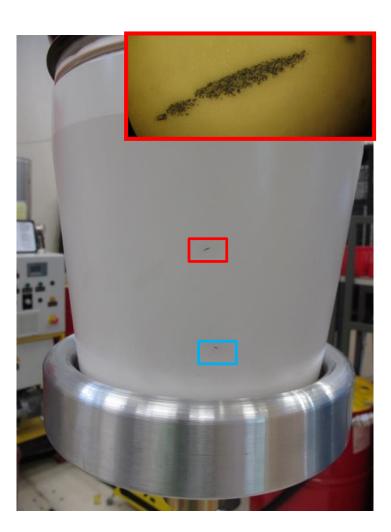
																-		-	1	
S10C	B01:	RF sta	tion e	expert	R	F statio	n: St	atus s	State M	IPS DEL/	AY .	М	ode CC	NDITIO	NING			ePic		Help 🚽
Modulato	r State TR	IGGER	remote	Cond. Tool	ON	LLRF	S DELAY	Coo	ling			tate RF R			Conditioni		iming Ra		IZ ·	n Out power
Overview	Modulat	tor LLRF	ILK T	Timing Ter	mperature	es Co	oling	Conditio	ning Too	I L	last ILK S	struct. 3 r	еп.: реак	24.10.20	JI6 07:27:4	43.733 E	vent RF fi	re 1		
STA	RTS	тор	RESET	State	<u>e:</u>	ON		F	RF C	ond	litio	ning) To	ol Si	10C	B01		HEI	LP	Detach
Power	RF Power	Abs. Vac.	Rel. Vac.	Avg. Time	Long T	erm Data	Vacu	ium Chai	nnels	Vacuum	Control	BDR	Power	Control	Log	Power I	Ramping	Info	1	
Setting		Pressure	Pressure	betw. BD	VMCC-A010	VPIG-A050	VPIG-A040	VPIG-A030	VPIG-A090	VPIG-A020	VPIG-A010	VPNG-A010	VPNG-A020	VPNG-A030	VPNG-A040	VPNG-A050	VPNG-A060	VPNG-A070	VPNG-A080	KLYSTR
					Relative	Relative	Relative Pressure	Relative	Relative	Relative	Relative	Relative	Relative	Relative	Relative	Relative	Relative	Relative	Relative	Relative
					Pressure 6.7 %	Pressure 12.8 %	12.8 %	Pressure 12.8 %	Pressure 66.0 %	Pressure 12.8 %	Pressure 12.8 %	Pressure 0.5 %	Pressure 0.0 %	Pressure 0.0 %	Pressure 0.0 %	Pressure 0.0 %	Pressure 1.4 %	0.0 %	Pressure	0.1 %
00.57	17.00			0.70	Deserves	Deserves	Deserves	Deserves	Deserves	Deserves	Deserves	Deserves	Deserves	Deserves	Deserves	Deserves	Deserves	Descentra	Deserves	Deserves
89.57	47.82	1.60e-08	66.0 %	838	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	[mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]	Pressure [mbar]
%	MW	mbar		S	1.6e-09	3.1e-09	3.1e-09	3.1e-09	1.6e-08	3.1e-09	3.1e-09	1.2e-10	0.0e+00	0.0e+00	0.0e+00	0.0e+00	3.5e-10	0.0e+00	3.5e-10	1.3e-11
RF-POWER [MW]					Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling	Scaling
50 -					Factor [%]		Factor [%]	Factor [%]												Factor [%]
40					444	+100	+100		444		+100			444	444	444			444	
30					+100	+100	+100	+100	+100	+100	4100	+100	+100	+100	+100	+100	+100	+100	+100	+100
20					Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable
10					Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel
- E					×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	Pea	ak Vacuum P	ressure [ml	bar]																
1e-05																				
1e-06 -																				
1e-07 -						Modulator	State ST	NDBY HV		G Co	nditionina	SM State	RE ON			Tan	get Pressur	e 2.004	e-08 mba	r
1e-08 -						or HVPS Se		42.3 V			-	ing Limit		RM	tef.		ctual powe		e-08 mba	
1e-09					Modulat	or HVPS Mo	onitor 26	85.8 V			BDR Pov	wer Limit	89.570	%		Vacuum R	amp. Spee	d 75.91	1 %/min	
1e-10					Klystron Voltage - 348.8 kV						LTR Power Limit 89.570 %					LLRF Amplitude 0.63				
-15	-12.5	-10 -7.5	-5	-2.5 0		Klystron Cu Clystron Va			ala a m	_		akdowns e last BD			_					
-15	-12.5	-10 -7.5 min	-5	-2.5 0	P.	Last Mess			noar 5 07:27:											
b							24	. 10. 2010	1 11.61.	10.755	IN VIL									

Conditioning of first C-band module

Module conditioning:

Reached almost maximum available RF power (50 MW, 3 µs, full compression)

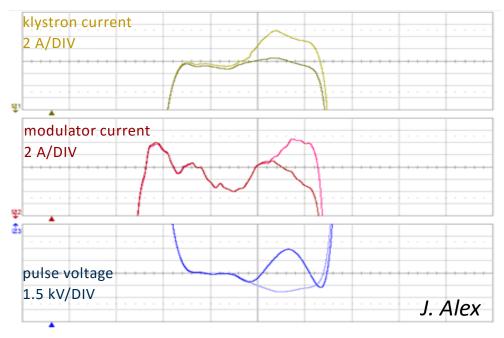
S-band klystrons (Thales TH2100L):


- Long-term experience only from test facility (SITF)
- Many gun arcs in 10 Hz operation at SITF, little experience at 100 Hz
- Two klystrons with high body losses, 100 Hz operation critical with these klystrons
- Poor lifetime record in SITF -> potential risk for operation of SwissFEL

C-band klystrons (Toshiba E37212):

Overall very good experience, but...

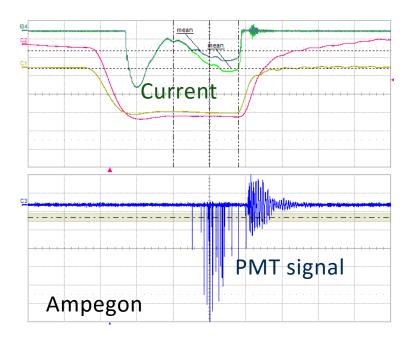
- Lost one tube in test stand
 - Crater on gun ceramics
- Exact cause unclear, candidates are:
 - Air bubbles in oil
 - Oil humidity too high?
 - 'Strange pulses'

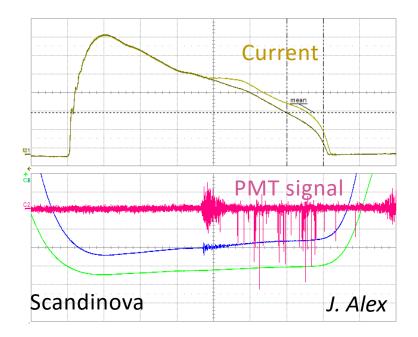


C-band klystrons (Toshiba E37212): 'Strange pulses'

From time to time (rate can vary a lot), we observe 'strange pulses'

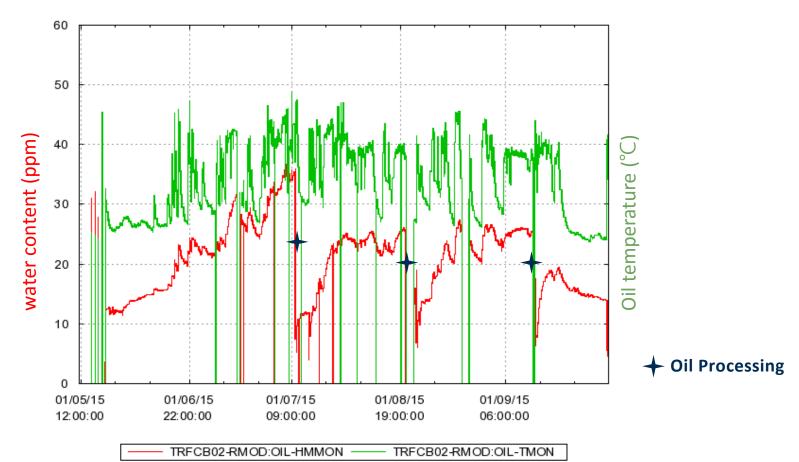
• During the pulse the klystron current increases up to 1%




,Strange' pulse waveform (zoom into flat-top)

C-band klystrons (Toshiba E37212): 'Strange pulses'

- We see these pulses with both modulator types
- We see light with a photo-multiplier tube when these pulses appear
- Unclear, if strange pulses are dangerous to the klystron
- We experienced very high rate (1/4000) of strange pulses prior to klystron failure



Humidity of transformer oil in modulators

- In one of the modulator types, we saw a quick increase of the oil humidity during operation
- Rate of increase correlates with oil temperature

Humidity of transformer oil in modulators

- In one of the modulator types, we saw a quick increase of the oil humidity during operation
- Rate of increase correlates with oil temperature
- Around 2-3 g of water are added into the system per day during operation

PSI evaluated possible sources. Water seems to come out of isolation paper and other plastic material in the transformer.

- → Around 500 g of water can be stored in the transformer when assembled at 50% relative humidity
- \rightarrow Tested: oil could be dried using a N₂ flow over the oil surface
- \rightarrow Tested: oil could be dried using a room air flow over the oil surface

Chemical equilibrium between humidity in air cover layer, oil, and plastic material in transformer

 \rightarrow Need a way to dry the transformers / oil during operation

Actions by PSI

- Oil tanks of C-band modulators (both from Ampegon and ScandiNova) allow for an evacuation
 - \rightarrow Air bubbles in the oil can be removed
 - \rightarrow Can help drying the transformers?
- Oil drying system is added to modulator(s)
 - \rightarrow Allows operation when transformer is not yet dry

Experience at your facilities?