Undulator BBA & FEL Commissioning for PAL-XFEL

Heung-Sik Kang on behalf of PAL-XFEL team *Pohang Accelerator Laboratory*

PAL-XFEL Layout

Main parameters		Undulator Line	HX1	SX1
e ⁻ Energy	10 GeV	Wavelength [nm]	0.1 ~ 0.6	1 ~ 4.5
e ⁻ Bunch charge Slice emittance	Bunch charge 20-200 pC ice emittance 0.5 mm mrad	Beam Energy [GeV]	4 ~ 10	3.15
Repetition rate Pulse duration	60 Hz 5 fs – 100 fs	Wavelength Tuning [nm]	0.6 ~ 0.1 (energy or gap)	4.5 ~ 3 (energy) 3 ~ 1 (gap)
Peak current3 kASX line switchingDC (Phase- Kicker (Phase- 	3 kA	Undulator Type	Planar, out-vac.	Planar, out-vac
	DC (Phase-1) Kicker (Phase-2)	Undulator Period / Gap [mm]	26 / 8.3	35 / 8.3

De-Chirper

L3S

*

Tune-up

dump

*/7

Main

dump

PAL-XFEL Layout (Detail)

PAL XFEL

SSS

XSS NCI

Undulator

FXS FXL SFX CXI

NCI

XSS

PAL XFEL

SSS

- EU-XFEL undulator design is benchmarked.
- PAL modified the design including the new magnetic design, EPICS IOC, and updated tolerances reflecting new parameters.

Symbol	Unit	Nominal value	
E	GeV	10.000	
g	mm	8.30	
λ _u	mm	26.0	
L _{und}	m	5.0	
λ_{r}	nm	0.1	
B_{eff}	Tesla	0.8124	
K		1.9727	
Optical phase error	degree	less than 5.0	

Undulator Intersection

TH XE

SSS

PAL XFEL

Undulator Vacuum Chamber

FXS FXL SFX CXI

NCI

XSS

PAL XFEL

SSS

- Surface roughness : < 150 nm</p>
 - Chemical polishing
- Oxide layer thickness : < 7 nm</p>
 - Chemical Cleaning

Commissioning Status

• Nov 2015	RF conditioning Started
♦ 14 April 2016	Beam commissioning Started
♦ 25 April	10 GeV acceleration Achieved
♦ 03 June	Dipole edge radiation Observed
♦ 12 June	Undulator radiation Observed
♦ 14 June	First SASE lasing at 0.5 nm
♦ July	Summer maintenance for 1 month
♦ 30 August	SASE lasing at 0.5 nm (재현)
• 09 September	Beamline commissioning with 0.5 nm FEL is Completed
• 08 October	Lasing at 0.35 nm
♦ 16 October	Lasing at 0.2 nm
◆ ?	Lasing at 0.15 nm

Beam Based Alignment for Undulators

- To establish a straight orbit along the undulators
- ◆ All correctors of undulator line are turned OFF and Undulator gap are fully open (200 mm)
- BPM offsets and quad offsets are calculated to get dispersion-free straight orbit
- ♦ All cavity BPMs and quads have its own mover which can move up to +/-1 mm with precision of 1 um for horizontal and vertical directions.
- ◆ Cavity BPM's resolution is essential for BBA performance
 - Beam positions are measured at four different beam energy:
 4, 5.2, 6.7, 10 GeV
 - At least 7 or 8 steps is required. It takes about 2 to 3 hours

Cavity BPM resolution

FXS FXL SFX CXI

NC

XSS

horizontal

TH XE SSS

PAL XFEL

vertical

Beam Based Alignment for Undulators

1-st step

8-th step

TH XE

SSS

PAL XFEL

NCI

BBA Scan Orbit

FXS FXL SFX CXI

NCI

XSS

3 Energy: 5.2, 6.7, 10 GeV

TH XE SSS

PAL XFEL

4 Energy: 4, 5.2, 6.7, 10 GeV

Undulator Radiation

Global Orbit Feedback

- Global orbit feedback runs from Injector end to Main dump
- ◆ It uses the design lattice function and the calculated beam
 - energy by LEM (Linac Energy Management)

XE

SSS

PAL XFEL

Electron Beam Stability

FXS FXL SFX CXI

NCI

XSS

- ✓ Circle represents a phase space of 1 um emittance electron beam
- Electron beam jitters in position and angle are much smaller than the phase space

First Lasing at 0.5 nm on 14 June

Spontaneous radiation

12 June 2016

05:01, 14 June 2016

16 June 2016

0.35 nm FEL (08 Oct. 2016, 2:13 pm)

- Beam energy: 5.2 GeV
- Undulator gap: 9 mm
- Undulator K: 1.87
- Number of undulators: 20
- Undulator BBA is applied

XE

TH

SSS

PAL XFEL

Undulator Optimization

- ✓ Lasing of 0.15 nm FEL is not so easy to achieve as 0.5 nm FEL.
- ✓ Requirements for lasing are very stringent.
- $\checkmark\,$ Procedures for Undulator optimization are established
 - K-value tuning
 - Undulator Field Center
 - Phase matching
 - Undulator Tapering (TBD)

Undulator Field

XSS **NCI**

Undulator K-tuning

PAL XFEL

SSS

XSS NCI

K-tuning Gap

Undulator Radiation Spectrum for Different Vertical offset

Undulator Field Center Position

Undulator Vertical Offset

FXS FXL SFX

NCI

XSS

PAL XFEI

SSS

- ✓ BBA was done with undulator gap closed to 9 mm
- ✓ In vertical plane, a bow pattern of BPM offsets and quad offsets is clearly shown
- ✓ It is because the undulator natural focusing strength increases as the vertical offset of undulator increases.
- $\checkmark~$ It is not corrected in the BBA
- ✓ Decide to use OPEN GAP

$$\frac{d^2 y_{\beta n}}{dz^2} \approx -\left(\frac{K_0^2 k_u^2}{2\gamma_0^2}\right) y_{\beta n} \equiv -k_{n0}^2 y_{\beta n},$$

Phase Matching by Phase-shifter

PAL XFEL

SSS

Electron Beam Manipulation

FXS FXL SFX CX

NC

XSS

- R56
 - BC1: 66.7 mm
 - BC2: 45 mm
 - BC3: 0 mm
- Bunch length
 - Injector: 877.5 um
 - BC1: 92 um (CR = 9.5)
 - BC2: 3.8 um (CR = 24.0)
- Beam charge

PAL XFEL

- Injector: 150 pC
- BC1: 120 pC

SSS

- BC2: 120 pC or 80 pC (by using a collimator at BC2)
- Undulator: 80 pC

- Emittance (Projected)
 - Injector: 0.48 / 0.42 mm-mrad
 - Linac End: 1.23 / 2.69 mm-mrad
- RF phase
 - Gun : -37.5
 - L1: -19.5
 - X-linearizer: -180
 - L2: -17.0
 - L3, L4: 0.0

Injector Emittance (Projected)

Horizontal: 0.47 mm-mrad at 150 pC

Vertical: 0.42 mm-mrad at 150 pC

X-linearizer

OFF

Bunch Length Measurement

Projected Emittance at Linac End

- Emittance measured with four wire scanners @120 pC
 - Hor. emittance: 1.23 mm-mrad
 - Ver. emittance: 2.69 mm-mrad

Beam size measurement with wire scanner

SSS

PAL XFEL

Hor. emittance

0.2 nm FEL (16 Oct. 2016, 1:22 am)

- Beam energy: 6.7 GeV
- Undulator gap: 9 mm
- Undulator K: 1.87

PAL XFEL

SSS

- Number of undulators: 20
- K-tuning & Phase-matching data are applied

Movie of 0.2 nm FEL

Saturation of 0.2 nm FEL

FXS FXL SFX CX

NCI

XSS

PAL XFEL

SSS

- ✓ Same **K** for all undulators
- ✓ No substantial increase after Self-
- \checkmark FEL is saturated?

Genesis Simulation for 0.2 nm

- Emittance (slice): 0.6 um
- Peak current : 3 kA

- Emittance (slice): 0.9 um
- Peak current : 3 kA

• Peak current : 3 kA

Genesis for 0.15 nm & 0.35 nm

XSS NCI

SFX

FEL Intensity Limiting Factors

FXS FXL SFX XSS

NC

- Factors to be considered as FEL Intensity Limitation \checkmark
 - 1) Vertical emittance growth
 - dispersion at L1 & L2 \rightarrow Redo the Linac BBA is necessary
 - twin beam from laser \rightarrow Replacement of bad optics components
 - 2) Emittance growth due to strong CSR
 - Currently overcome by BC2 collimator
 - Need to decrease Compression Ratio at BC2 by decreasing the laser pulse length
 - Or, to use three Bunch compressors
 - 3) poor betatron matching to undulators
 - Undulator matching program is being prepared.
 - Four Wire scanners along the undulators were tested to find detector saturation \rightarrow Detector to be improved for e-beam profile measurement
 - 4) Correlated energy spread is too big (10-3). Chirp needs to be compensated.
 - 5) Halo particles generated at the gun and laser
 - Decrease to gun phase to -30 or below
 - Improve the uniformity of laser profile

Vertical emittance growth

FXS FXL SFX CXI

NC

XSS

PAL XFEL

SSS

- ✓ Due to dispersion and twin beam
- $\checkmark~$ Twin beam is generated at the gun.
 - Strongly depend on the cathode position of laser beam
 - It is thought due to degradation of optics from Laser system to Gun
 - To be improved soon

Summary

- ➢ 0.2 nm FEL lasing is achieved.
- Procedures for Undulator BBA, K-value tuning, undulator field centre, and phase matching are established.
- The saturation of 0.2 nm FEL is also achieved.
- An X-band deflector is absolutely necessary!!

Thank you for your attention

X25

th

-