Latest Developments in POWHEG

Tomáš Ježo University of Zürich

In collaboration with: *P. Nason [arXiv:1509.09071] J. Lindert, P. Nason, C. Oleari, S. Pozzorini [arXiv:1607.04538]*

LHC TOP WG meeting 21 November 2016

Resonance aware NLO+PS & top-pair production at the LHC

Tomáš Ježo University of Zürich

In collaboration with: *P. Nason [arXiv:1509.09071] J. Lindert, P. Nason, C. Oleari, S. Pozzorini [arXiv:1607.04538]*

LHC TOP WG meeting 21 November 2016

Resonance aware NLO+PS & top-pair production at the LHC

Tomáš Ježo University of Zürich

In collaboration with: *P. Nason [arXiv:1509.09071] J. Lindert, P. Nason, C. Oleari, S. Pozzorini [arXiv:1607.04538] S. Ferrario Ravasio, P. Nason, C. Oleari [arXiv:16xx.yyyy]*

LHC TOP WG meeting

21 November 2016

Outline

► NLO+PS matching for processes with radiating intermediate resonances

- Problem: real/born on-shellness mismatch
 - ✤ Cancellation of IR singularities
 - ✤ Hardest emission Sudakov
- Solution: resonance aware NLO+PS matching
 - lpha Resonance virtualities preserving $\mathcal{R} \leftrightarrow \mathcal{B}$ mapping
 - Generalized FKS subtraction

► Generator for top-pair and Wt associated production at the LHC > $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$

- ► Study the impact of:
 - > Resonance aware NLO+PS matching
 - Non-resonant and interference effects
 - Radiative corrections in top-decays

Outline

► NLO+PS matching for processes with radiating intermediate resonances

- Problem: real/born on-shellness mismatch
 - ✤ Cancellation of IR singularities
 - ✤ Hardest emission Sudakov
- Solution: resonance aware NLO+PS matching
 - lpha Resonance virtualities preserving $\mathcal{R} \leftrightarrow \mathcal{B}$ mapping
 - ✤ Generalized FKS subtraction
- ► Generator for top-pair and Wt associated production at the LHC > $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$
- ► Study the impact of:
 - > Resonance aware NLO+PS matching
 - Non-resonant and interference effects
 - Radiative corrections in top-decays

Outline

► NLO+PS matching for processes with radiating intermediate resonances

- Problem: real/born on-shellness mismatch
 - ✤ Cancellation of IR singularities
 - ✤ Hardest emission Sudakov
- Solution: resonance aware NLO+PS matching
 - lpha Resonance virtualities preserving $\mathcal{R} \leftrightarrow \mathcal{B}$ mapping
 - ✤ Generalized FKS subtraction
- ► Generator for top-pair and Wt associated production at the LHC > $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$
- ► Study the impact of:
 - Resonance aware NLO+PS matching
 - Non-resonant and interference effects
 - Radiative corrections in top-decays

 \blacktriangleright In a typical calculation of a $2 \rightarrow n$ scattering process at NLO

$$\sigma_{\rm NLO} = \int_n (\mathcal{B} + \mathcal{V}) + \int_{n+1} \mathcal{R}$$

 \blacktriangleright In a typical calculation of a $2 \rightarrow n$ scattering process at NLO

$$\sigma_{\rm NLO} = \int_n (\mathcal{B} + \mathcal{V}) + \int_{n+1} \mathcal{R}$$

separately divergent

 \blacktriangleright A typical calculation of a $2 \rightarrow n$ scattering process at NLO ...

$$\sigma_{\rm NLO} = \int_n (\mathcal{B} + \mathcal{V}) + \int_{n+1} \mathcal{R}$$

 \blacktriangleright ... will employ a mapping between n+1 (real) and n (Born) phase space

- Treatment of IR singularities
- Calculation of the hardest emission Sudakov

 \blacktriangleright ... will employ a mapping between n+1 (real) and n (Born) phase space

> Such that when q becomes soft or collinear with p_i

$$\{p_1, p_2, \dots, q\} \to \{p_1, p_2, \dots\}$$
$$\{p_1, \dots, p_i, \dots, q\} \to \{p_1, \dots, p_i + q, \dots\}, i > 2$$

- \blacktriangleright In FKS for *emitter* i and any *emitted* momentum
 - $\succ \vec{p_i}$ preserved
 - > Recoiling system boosted along $\vec{p_i}$

> ... will employ a mapping between n + 1 (real) and n (Born) phase space

► In FKS

 $\succ b$ direction preserved

- $ightarrow W^+W^-\overline{b}$ system boosted along $\vec{p_b}$
- ► In general
 - Resonance virtualities not preserved

$$p_t^2(\Phi_{n+1}) \neq p_t^2(\Phi_n)$$

► In general

> Resonance virtualities not preserved, $p_t^2(\Phi_{n+1}) \neq p_t^2(\Phi_n)$

➤ This leads to real/born on-shellness mismatch

 $1/[(p_t^2(\Phi_{n+1}) - m_t^2)^2 + m_t^2\Gamma_t^2] \qquad 1/[(p_t^2(\Phi_n) - m_t^2)^2 + m_t^2\Gamma_t^2]$

► In general

> Resonance virtualities not preserved, $p_t^2(\Phi_{n+1}) \neq p_t^2(\Phi_n)$

This leads to real/born on-shellness mismatch

► In general

> Resonance virtualities not preserved, $p_t^2(\Phi_{n+1}) \neq p_t^2(\Phi_n)$

► This leads to real/born on-shellness mismatch ► If $p_t^2(\Phi_n) = m_t^2$

 $1/[(p_t^2(\Phi_{n+1}) - m_t^2)^2 + m_t^2\Gamma_t^2] \qquad 1/[(p_t^2(\Phi_n) - m_t^2)^2 + m_t^2\Gamma_t^2]$

► In general

- > Resonance virtualities not preserved, $p_t^2(\Phi_{n+1}) \neq p_t^2(\Phi_n)$
- This leads to real/born on-shellness mismatch causing
 Poor convergence

> Distortion of radiation observables

hardest emission Sudakov – off due to large \mathcal{R}/\mathcal{B}

► In general

- > Resonance virtualities not preserved, $p_t^2(\Phi_{n+1}) \neq p_t^2(\Phi_n)$
- This leads to real/born on-shellness mismatch causing
 Poor convergence

Distortion of radiation observables

hardest emission Sudakov - off due to large \mathcal{R}/\mathcal{B}

► Solution:

[Campbell, Elliss, Nason, Re 2014]

[TJ, Nason 2015]

- > Use mapping preserving resonance virtualities
- ► But there is a catch:
 - Same final state realized through different resonance histories requiring different mappings (and different reference frames)

- All contributions must be integrated over regions dominated by a single resonance history
- FKS subtraction needs generalizing
 - Standard FKS requires that the soft limit is taken in the same frame for all singular regions

► Solution:

- [Campbell, Elliss, Nason, Re 2014]
- > Use mapping preserving resonance virtualities
- ► But there is a catch:
 - Same final state realized through different resonance histories requiring different mappings

- All contributions must be integrated over regions dominated by a single resonance history
- FKS subtraction needs generalizing
- Alternative solution based on a re-mapping of the phase space also available [Frederix, Frixione, Papanastasiou, Prestel, Torrielli 2016]

[TJ, Nason 2015]

- All contributions must be integrated over regions dominated by a single resonance history
 - Contributions with Born kinematics:

Contributions with real kinematics: the separation nested with the separation into singular rgions

► Bonus:

Resonance aware formalism allows us to further improve the POWHEG radiation formula

- ➤ We can attach radiation to each resonance in a single event (allrad scheme)
 - Requires keeping track of multiple matching scales for subsequent shower

► NLO+PS matching for processes with radiating intermediate resonances

- Problem: real/born on-shellness mismatch
 - Problematic cancellation of IR singularities leading to poor convergence
 - \blacktriangleright Large \mathcal{R}/\mathcal{B} ratio in the hardest emission Sudakov leading to distortion of radiation observables
- Solution: resonance aware POWHEG method
 - » Integration over regions dominated by one resonance history
 - \clubsuit Resonance virtualities preserving $\mathcal{R}\leftrightarrow\mathcal{B}$ mapping
 - Generalized FKS subtraction
 - Improved multiple-radiation scheme (allrad)
- > Publicly available as a part of the POWHEG BOX RES code

- ► Production of top-pair and associated *Wt*; top decaying leptonically
 - ▷ 5F scheme, @LO

≻ Different processes
 ∞ Different final state
 ∞ Different power of α_S

- ► Production of top-pair and associated *Wt*; top decaying leptonically
 - ▷ 5F scheme, @LO

- ➤ Different processes
 - ✤ Different final state
 - ▶ Different power of α_S

- ► Production of top-pair and associated *Wt*; top decaying leptonically
 - ➣ 5F scheme, @NLO

- Different processes
 Different final state
 - ▶ Different power of α_S

► Production of top-pair and associated *Wt*; top decaying leptonically

▷ 5F scheme, Wt @NLO, top-pair @LO

➤ Same processes

✤ Real correction to Wt production includes top-pair topology

- ► Production of top-pair and associated *Wt*; top decaying leptonically
 - ≻ 4F scheme, @LO

- ➤ Same processes
 - Constitutes unified treatment for Wt and top-pair production

► Process

 $ightarrow pp
ightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ @ NLO QCD

- > Born, real and virtual matrix elements by OpenLoops
- ≻ 4F scheme
 - \blacktriangleright Unified description of top-pair and Wt production
 - \blacktriangleright Effects of b-quark mass included
 - ✤ Phase space with unresolved *b*-quarks accessible

► Process

- > $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ @ NLO QCD
- Born, real and virtual matrix elements by OpenLoops
- ≻ 4F scheme
 - \blacktriangleright Unified description of top-pair and Wt production
 - Effects of *b*-quark mass included
 - ✤ Phase space with unresolved b-quarks accessible
- ► NLO+PS generator
 - Implements resonance aware POWHEG method
 - Employs 2 resonance histories

► Process

- $\succ pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ @ NLO QCD
- Born, real and virtual matrix elements by OpenLoops
- ➤ 4F scheme (unified top-pair & Wt treatment, b mass effects, ...)

► NLO+PS generator

- Implements resonance aware POWHEG method
- \succ Employs 2 resonance histories ($t(W^+b)\overline{t}(W^-\overline{b}), Z(W^+W^-)b\overline{b}$)

► Shower Monte Carlo

- standard LHE interface not sufficient (separate scalup required for each resonance)
- > Pythia8: "simplified" PowhegHooks class available
- ➤ Herwig7: work in progress

► Process

- $\succ pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ @ NLO QCD
- Born, real and virtual matrix elements by OpenLoops
- ➤ 4F scheme (unified top-pair & Wt treatment, b mass effects, ...)

► NLO+PS generator

- Implements resonance aware POWHEG method
- \succ Employs 2 resonance histories ($t(W^+b)\overline{t}(W^-\overline{b}), Z(W^+W^-)b\overline{b}$)

► Shower Monte Carlo

standard LHE interface not sufficient (separate scalup required for each resonance)

Pythia8: "simplified" PowhegHooks class available
Herwig7: work in progress

see Silvia's talk tomorrow

► Process

- $\succ pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ @ NLO QCD
- Born, real and virtual matrix elements by OpenLoops
- ➤ 4F scheme (unified top-pair & Wt treatment, b mass effects, ...)

► NLO+PS generator

- Implements resonance aware POWHEG method
- \succ Employs 2 resonance histories ($t(W^+b)\overline{t}(W^-\overline{b}), Z(W^+W^-)b\overline{b}$)

► Shower Monte Carlo

> Pythia8 interface available, Herwig7 interface work in progress

Implementation

- Resonance aware POWHEG method: POWHEG-BOX-RES
- ▶ Process implementation: b_bbar_41 or $b\bar{b}4l$
- > Publicly available http://powhegbox.mib.infn.it/

Results

► Study the impact of:

- Resonance aware NLO+PS matching: by comparing different
 - b_bbar_41 results [TJ, Lindert, Nason, Oleari, Pozzorini 2016]
 - res-default: resonance treatment switched on (allrad)
 - res-off: resonance treatment switched off
 - res-guess: attempt at improving res-off by reconstructing the resonance information just before the shower
- Non-resonant and interference effects: by comparing against ttb_NL0_dec [Campbell, Elliss, Nason, Re 2014]
 - both implement resonance aware NLO+PS & allrad
 - ▶ b_bbar_41: all diagrams for $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$
 - ttb_NLO_dec: top-pair production and decay @NLO with NWA
- Radiative corrections in top-decays: by comparing against hvq
 hvq: top-pair production @NLO, decay @LO, resonance aware NLO+PS matching not required (no emission from within the top resonance) [Frixione, Nason, Ridolfi 2007]

Results

► Study the impact of:

- > Resonance aware NLO+PS matching: by comparing different
 - b_bbar_41 results [TJ, Lindert, Nason, Oleari, Pozzorini 2016]
 - res-default: resonance treatment switched on (allrad)
 - res-off: resonance treatment switched off
 - res-guess: attempt at improving res-off by reconstructing the resonance information just before the shower
- Non-resonant and interference effects: by comparing against ttb_NL0_dec [Campbell, Elliss, Nason, Re 2014]
 - both implement resonance aware NLO+PS & allrad
 - ▶ b_bbar_41: all diagrams for $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$
 - ttb_NLO_dec: top-pair production and decay @NLO with NWA
- Radiative corrections in top-decays: by comparing against hvq
 hvq: top-pair production @NLO, decay @LO, resonance aware NLO+PS matching not required (no emission from within the top resonance) [Frixione, Nason, Ridolfi 2007]

Results

► Study the impact of:

- > Resonance aware NLO+PS matching: by comparing different
 - b_bbar_4l results [TJ, Lindert, Nason, Oleari, Pozzorini 2016]
 - res-default: resonance treatment switched on (allrad)
 - res-off: resonance treatment switched off
 - res-guess: attempt at improving res-off by reconstructing the resonance information just before the shower
- Non-resonant and interference effects: by comparing against ttb_NL0_dec [Campbell, Elliss, Nason, Re 2014]
 - both implement resonance aware NLO+PS & allrad
 - ▶ b_bbar_41: all diagrams for $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$
 - ttb_NLO_dec: top-pair production and decay @NLO with NWA
- Radiative corrections in top-decays: by comparing against hvq
 hvq: top-pair production @NLO, decay @LO, resonance aware NLO+PS matching not required (no emission from within the top resonance)

► $W j_B$ mass

res-default: resonance aware NLO+PS, allrad scheme

► $W j_B$ mass

- res-default: resonance aware NLO+PS, allrad scheme
- fes-off: resonance aware NLO+PS switched off

► $W j_B$ mass

- res-default: resonance aware NLO+PS, allrad scheme
- fes-off: resonance aware NLO+PS switched off
- resonance history "guessed" before showering

 $\blacktriangleright j_B$ mass and profile

- res-default: resonance aware NLO+PS, allrad scheme
- res-off: resonance aware NLO+PS switched off
- res-guess: resonance aware NLO+PS swtched off,

resonance history "guessed" before showering

► Summary

- res-default: resonance aware NLO+PS, allrad scheme
- res-off: resonance aware NLO+PS switched off
- resonance history "guessed" before showering
- ► In conclusion, the resonance aware NLO+PS ...
 - ➤ yields a narrower peak for the reconstructed top distribution;
 - \succ predicts more hadronic activity aroudn the B hadron;
 - offers a considerable speed up both in the integration and event generation (not discussed in this talk, please ask).
- ► Moreover, the traditional approach ...
 - cannot be fixed by reconstructing the resonance history of the event after the hardest emission has already been generated.

► Wj_B and lj_B mass ► --- b_bbar_41: all diagrams for $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$ ► ---- ttb_NLO_dec: top-pair prod. and decay @NLO with NWA ► both: resonance aware NLO+PS, allrad scheme

► j_B mass and profile ► \longrightarrow b_bbar_4l: all diagrams for $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$ ► \longrightarrow ttb_NL0_dec: top-pair prod. and decay @NLO with NWA ► both: resonance aware NLO+PS, allrad scheme

b_bbar_4l yields slightly wider b jets

although differences in jet structure significant, they are not sufficient to induce enough difference in reconstructed mass

► Summary

 \succ — b_bbar_41: all diagrams for $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$

➤ — ttb_NL0_dec: top-pair prod. and decay @NLO with NWA

- both: resonance aware NLO+PS, allrad scheme
- ► In conclusion, the non-resonant and interference effects...
 - \succ can lead to a considerably different *b* jet structure;
 - > but do not seem relevant for the reconstructed top mass spectrum for usual values of Δ_R .
- ► Also ...
 - matrix elements in ttb_NL0_dec much less computationally costly to evaluate;
 - \succ hadronic W decays unfeasible unless using NWA.

► Summary

 \succ — b_bbar_41: all diagrams for $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$

➤ — ttb_NL0_dec: top-pair prod. and decay @NLO with NWA

- both: resonance aware NLO+PS, allrad scheme
- ► In conclusion, the non-resonant and interference effects...
 - \succ can lead to a considerably different *b* jet structure;
 - > but do not seem relevant for the reconstructed top mass spectrum for usual values of Δ_R .

more in Silvia's talk tomorrow

► Also ...

- matrix elements in ttb_NL0_dec much less computationally costly to evaluate;
- \succ hadronic W decays unfeasible unless using NWA.

Impact of radiative corrections in top decays

Impact of radiative corrections in top decays

► j_B mass and B fragmentation function

▶ — b_bbar_41: $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$ @NLO, allrad scheme ▶ — → hvq: top-pair production @NLO, decay @LO

 $h \vee q$ predicts narrower b jets and softer B fragmentation function

Impact of radiative corrections in top decays

► Summary

> — b_bbar_41: $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$ @NLO, allrad scheme > — hvq: top-pair production @NLO, decay @LO

- In conclusion, radiative corrections in top decays have dramatic impact both on ...
 - $\succ b$ jet related observables;
 - \succ and observables constructed from b jets.

Jet vetoes and Wt contribution

► j_B transverse momentum, no cuts

 \blacktriangleright ——— ttb_NLO_dec: Wt included via LO reweighting

 \succ

Jet vetoes and Wt contribution

Jet vetoes and Wt contribution

Jet vetoes and $Wt\ {\rm contribution}$

► Summary

```
➤ ____ b_bbar_4l: exact Wt
```

- \succ ----- ttb_NL0_dec: Wt included via LO reweighting
- \succ ----- hvq: no Wt

► In conclusion

- relative weight of the Wt contribution important at small values of b jet transverse momentum;
- > jet-vetoed cross sections involve enhanced Wt contribution which are:
 - ✤ completely missing in hvq
 - significantly underestimated in ttb_NLO_dec.

Summary and Outlook

- POWHEG BOX RES implements a new resonance aware NLO+PS matching TJ, Nason 2015]
 - Born/real on-shelness mismatch solved
 - > Studies of processes with intermediate radiating resonances feasible
 - \succ So far: single-top t-channel 5FS, and top-pair & tW4FS

> $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ 4FS [TJ, Lindert, Nason, Oleari, Pozzorini 2016]

- > Unified description of top-pair and tW production
 - ✤ Impact of the resonance treatment significant
 - Non-resonant and inteference effects important, but probably not relevant for top mass measurements
 - ✤ Impact of radiative corrections in top decays dramatic
- Systematic study of the impact of these effects on the top mass measurement well motivated
 - > First results in the talk of Silvia Ferrario Ravasio tomorrow

