

UCRIVERSITY OF CALIFORNIA

Summary of the Direct Top Quark Mass Measurements and New CMS Mass Combinations

Stephen Wimpenny Dept. of Physics & Astronomy, UC Riverside

on behalf of the ATLAS and CMS Collaboration

Stephen Wimpenny UC Riverside

LHCtopWG Meeting, CERN, November 21st – 22nd, 2016

There is a large body of work from ATLAS & CMS that targets the top quark mass.

In the interests of time I have been selective of the results that are covered and I will not cover:

- the indirect measurements from the production cross section
- the analyses that measure the pole or msbar mass using ttbar + jet events

These are in the additional material at the end of the talk.

My apologies if your favorite analysis isn't included!

Topics covered in this talk

- Summary of ATLAS and CMS Measurements using 'standard analysis techniques/topologies'
- New ATLAS and CMS results at 8 and 13 TeV
- Mass measurements using 'alternative topologies and techniques'
- New CMS mass combinations
- Comments on the LHC and World Average combinations

Stephen Wimpenny UC Riverside

Top Quark Mass – Kinematic Reconstruction

7 TeV Dilepton & Lepton+jets Measurements

dilepton channel

(Eur. Phys. J. C75 (2015) 330)

ATLAS Combination Top Quark Mass Systematics

	$m_{\rm top}^{\rm all} [{\rm GeV}]$		Phys. Lett. B761 (2016) 350
Results	172.84		
Statistics	0.34		
Method	0.05		
Signal Monte Carlo generator	0.14		
Hadronisation	0.23	k .	
Initial- and final-state QCD radiation	0.08		Combined
Underlying event	0.02		Comotnea
Colour reconnection	0.01		7 TeV dilepton & lepton+jets
Parton distribution function	0.08		& TaV dilanton
Background normalisation	0.04		o lev unepion
W/Z+jets shape	0.09		measurements
Fake leptons shape	0.05		
Jet energy scale	0.41		
Relative <i>b</i> -to-light-jet energy scale	0.25	R I	
Jet energy resolution	0.08		Dominant un containtica
Jet reconstruction efficiency	0.04		Dominunt uncertainties:
Jet vertex fraction	0.02		b IES
b-tagging	0.15		Community in the time.
Leptons	0.09		Jragmentation
$ E_{\mathrm{T}}^{\mathrm{miss}}$	0.05		
Pile-up	0.03		
Total systematic uncertainty	0.61		
Total	0.70		

CMS Run I Combination Top Quark Mass Systematics

Combined m_t result	$\delta m_{\rm t}({\rm GeV})$
Experimental uncertainties	
Method calibration	0.03
Jet energy corrections	
 – JEC: Intercalibration 	0.01
 – JEC: In situ calibration 	0.12
– JEC: Uncorrelated non-pileup	0.10
Lepton energy scale	0.01
$E_{\rm T}^{\rm miss}$ scale	0.03
Jet energy resolution	0.03
b tagging	0.05
Pileup	0.06
Backgrounds	0.04
Trigger	< 0.01
Modeling of hadronization	
JEC: Flavor	0.33
b jet modeling	0.14
Modeling of perturbative QCD	
PDF	0.04
Ren. and fact. scales	0.10
ME-PS matching threshold	0.08
ME generator	0.11
Top quark $p_{\rm T}$	0.02
Modeling of soft QCD	
Underlying event	0.11
Color reconnection modeling	0.10
Total systematic	0.47
Statistical	0.13
Total Uncertainty	0.48

Phys. Rev. D93 (2016) 072004

Combined 7 and 8 TeV lepton+jets, dilepton & all jets measurements

Dominant uncertainties: flavor dependent JEC: (u,d,s), c, b, g b jet modeling: b-fragmentation + b-hadron decays

limited by same uncertainties as ATLAS but treatment is different

Top Quark Mass – Kinematic Reconstruction

New Result

ATLAS Conf-2016-064 (to be submitted for publication)

all-jets channel

Fit to m_t dependence of m_{jjj}/m_{jj} ratio → reduces dependence on JES calibration

 $m_t = 173.80 \pm 0.55 \text{ (stat)} \pm 1.01 \text{ (syst) GeV}$

Precision ~ 1.15 GeV (0.7%)

limited by systematic uncertainties

Dominant uncertainties: JES & hadronization modeling

Top-Antitop Mass Difference

Top-Antitop Mass Difference

lepton+jets channel

New Result

arXiv 1610.09551 (submitted to PLB)

12

1D Mass analysis performed separately for l⁺ + jets and l⁻ + jets Result → difference between the two measurements

 $\Delta m_t = -0.15 \pm 0.19 \text{ (stat)} \pm 0.09 \text{ (syst) GeV}$

Substantial cancellation of systematic uncertainties in the mass difference

~ factor of 2 more precise than previous measurements dominant uncertainties: statistics, b (bbar) jet and background modeling

Limits on the Top Quark Width

 $\frac{\text{CMS}}{\sqrt{\text{s}} = 13 \text{ TeV}}$

New Result

CMS PAS TOP-16-019

First direct top width bounds from the LHC

Profile likelihood fit to shape of the M_{lb} spectrum for dilepton events → used to bound the top quark width

> Fit is done in categories (# b-jets, p_T of lepton) to optimize sensitivity

 $\label{eq:limits} \begin{array}{l} \text{Limits at 95\% CL:} \\ 0.6 \leq \Gamma_t \leq 2.5 \ \text{GeV} \quad \text{observed} \\ 0.6 \leq \Gamma_t \leq 2.4 \ \text{GeV} \quad \text{expected} \\ \text{for } m_t = 172.5 \ \text{GeV} \end{array}$

'Standard' Top Quark Mass Measurements

Analyses typically based on kinematic reconstruction and template fitting

Experimental:

- *Flavor dependent jet energy corrections*
- Jet energy corrections
- Pileup

 Further improvement
 → need improved theory input and analysis methods that constrain or marginalize some of uncertainties

Significant uncertainties

Modeling:

- Hadronization: Flavor dependent jet energy corrections* (string vs cluster fragmentation)
- *b-jet modeling (fragmentation and BR)*
- Renormalization & factorization scales
- Matrix element generator
- Underlying event

Example of an 'Alternative' Process

lepton+jets analysis in single top t-channel

fit to m(tb)

ATLAS CONF-2014-055

w.r.t. standard analyses: - different CR, hard scattering, pdf's

 $m_t = 172.2 \pm 0.7 \text{ (stat)} \pm 2.0 \text{ (syst) GeV}$

Dominant uncertainties: Jet energy scales & hadronization

LHCtopWG Meeting, CERN, November 21st – 22nd, 2016

Measurements not included in published Run I Combination

Dilepton Channel Analyses:

7 TeV End Point analysis
8 TeV M_{T2}/MAOS analysis
8 TeV M_{lb} analysis
8 TeV b-jet energy peak (E_b)
8 TeV Dilepton p_T distribution

gy peak (E_b) (CMS PAS TOP-15-002) p_T distribution(CMS PAS TOP-16-002)

Lepton + Jets Channel Analysis:

8 TeV BEST analysis

(CMS PAS TOP-14-011)

(EPJC 73 (2013) 2494)

(CMS PAS TOP-15-008)

(CMS PAS TOP-14-014)

Dilepton + Lepton + Jets Channel Analyses:

8 TeV B-lifetime analysis
8 TeV Lepton+ Sec. Vtx. Mass
8 TeV Lepton + J/ψ analysis

(CMS PAS TOP-12-030) (CMS PAS TOP-12-030) (CMS PAS TOP-15-014)

Single Top Analysis:

8 TeV Single Top Enhanced

(CMS PAS TOP-15-001)

Alternative Event Topologies/Analysis Techniques

Results individually quite consistent with each other

Some of these are more alternative in approach than others Significant overlap in the datasets and methods for some measurements

> Can a combination provide useful new information?

'Alternative' Measurement Combination

New Result

CMS PAS TOP-15-012

Alternative Measurements

B-lifetime, M_{lb} measurements dropped - overlap and/or strong correlation with other measurements
BEST measurement dropped as it is a template fit method and too similar in style to the published results

 \rightarrow 7 measurements to be combined

Measurements combined using BLUE

 $m_t = 172.58 \pm 0.21 \text{ (stat)} \pm 0.72 \text{ (syst) GeV}$

 $X^2 = 1.6/7 \text{ dof}, \text{ Prob} = 95 \%$

'Alternative' Measurement Combination

Alternative technique measurements CMS Run I and Alternative combinations

New combination agrees very well with CMS Run I result

CMS Run I and Alternative Combination Systematics

Combined <i>m</i> _t results	Run I	Alternative	Combined
	$\delta m_{\rm t}({\rm GeV})$	$\delta m_{\rm t}({ m GeV})$	$\delta m_{\rm t}({\rm GeV})$
Experimental uncertainties			
Method calibration	0.03	0.08	0.04
Jet energy corrections			
– JEC: Intercalibration	0.01	0.06	0.02
– JEC: In situ calibration	0.12	0.16	0.12
– JEC: Uncorrelated non-pileup	0.10	0.26	0.10
Lepton energy scale	0.01	0.14	0.01
$E_{\rm T}^{\rm miss}$ scale	0.03	0.04	0.04
Jet energy resolution	0.03	0.03	0.03
b tagging	0.05	0.02	0.05
Pileup	0.06	0.07	0.06
Secondary vertex mass	n/a	0.04	< 0.01
Backgrounds	0.04	0.08	0.04
Trigger	< 0.01	< 0.01	< 0.01
Modeling of hadronization			
JEC: Flavor	0.33	0.33	0.31
b jet modeling	0.14	0.22	0.14
Modeling of perturbative QCD	\square	$\langle \rangle$	
PDF	0.04	0.11	0.04
Ren. and fact. scales	0.10	0.30	0.10
ME-PS matching threshold	0.08	0.21	0.08
ME generator	0.11	0.07	0.11
Single top modeling	n/a	0.04	0.01
Top quark $p_{\rm T}$	0.02	0.21	0.02
Modeling of soft QCD			
Underlying event	0.11	0.10	0.11
Color reconnection modeling	0.10	0.11	0.10
Uncertainties (GeV)		L	L
Total systematic	0.47	0.72	0.46
Statistical	0.13	0.21	0.13
Total Uncertainty	0.48	0.75	0.48

Alternative combination:

- distribution of uncertainties very similar to the Run I
- dominant uncertainties:
 → hadronization modeling (comparable to Run I)
- other significant contributions
 → QCD modeling
 PDF, Q², ME-PS, Top
 → LES
 (larger than Run I)

Mass Combination Summary

a.) CMS

Run 1 combination: 0.3% 172.47 ± 0.48 GeV

Alternative combination: 0.4% 172.58 ± 0.75 GeV

b.) ATLAS

Current ATLAS combination: 0.4%172.84 ± 0.70 GeV

c.) Tevatron

New Tevatron combination: 0.4%174.34 \pm 0.64 GeV Phys. Rev. D93 (2016) 072994

CMS PAS TOP-15-012

Phys. Lett. B761 (2016) 350

Fermilab-Conf-16-298

Four independent combined results with precision at the sub 0.5% level

CMS Full Run I Combination

Combine the 7 published measurements and the 7 alternative measurements to produce a new Run I combination

Measurements combined using BLUE

 $m_t = 172.43 \pm 0.13 \text{ (stat)} \pm 0.46 \text{ GeV (syst)}$ $X^2 = 4.4/13 \text{ dof}$, Prob = 98 %

Precision 0.3 %

 $m_t = 172.44 \pm 0.13 \text{ (stat)} \pm 0.47 \text{ GeV (syst)}$

Phys. Rev. D93 (2016) 072994

no significant improvement in precision → new results have a systematic uncertainty distribution too similar to the published combination

Stephen Wimpenny UC Riverside

Measurement & Combination Summary

23

Very consistent picture

24

Both collaborations have produced very accurate measurements measurements of the top quark mass using 7 and 8 TeV LHC data using 'standard analysis techniques'

There is a growing set of additional measurements using 'alternative topologies', such as the single top t-channel and a variety of 'different analysis techniques'.

The precision of the results from these hasn't yet matched that of the 'standard measurements'.

CMS has presented a new analysis of its 'alternative' measurements and obtains a mass in good agreement with and comparable precision to its published Run I result based on a 'standard technique' combination

Both the individual measurements and the ATLAS and CMS combinations are in good agreement

25

Logic

LHC**top**WG

World and LHC Average Results → make use of reduction of systematical uncertainties by combining measurements measurements with different sensitivity to the systematic uncertainties Data from the LHC (ATLAS & CMS) and the Tevatron (CDF & D0)

Last Update : 2014 (arXiv:1403.4427)

This is seriously out-of-date !

Does not include the most precise results from ATLAS, CMS and D0 CMS Run I mass analyses are completed Work on D0:CMS lepton+jets studies has not found any problems on either side \rightarrow both measurements look OK Results are compatible at ~ 3 σ level

Can we agree on resuming the update of the LHC and World Average results?

There is an impressive collection of measurements from the LHC (and the Tevatron)

The results show very good consistency

Work on the Run I data is beginning to come to an end and preliminary results from Run II will begin to appear in the next few months

> Progress is being made towards understanding what these 'MC' mass measurements mean in relation to a theoretically well-defined masses (not covered in this talk)

It's probably time to think about re-starting the work on LHC Run I combination and an update of world average value (my personal view)

Additional Material

Top Quark Mass – Kinematic Reconstruction

 $\begin{array}{l} \text{ATLAS} \\ \sqrt{s} = 7 \text{ TeV} \end{array}$

(Eur. Phys. J. C75 (2015) 158)

all-jets channel

Fit to m_t dependence of m_{jjj}/m_{jj} ratio → reduces dependence on JES calibration

$$m_t = 175.1 \pm 1.4 \text{ (stat)} \pm 1.2 \text{ (syst) GeV}$$

Precision $\sim 1.8 \text{ GeV} (1.1\%)$

limited by systematic uncertainties

Alternative Event Topologies/Analysis Techniques

Analysis	Channel	Dataset	Reference	$m_{\rm t}~({\rm GeV})$	Stat. Uncertainty	Syst. Uncertainty
End Point	Dilepton	7 TeV	[2]	173.90	0.90	$+1.70 \\ -2.10$
B-lifetime	Dilepton and Lepton+jets	8 TeV	[7]	173.50	1.50	±2.91
Lepton + J/ψ Mass	Dilepton and Lepton+jets	8 TeV	[8]	173.50	3.00	±0.90
Lepton + SVX Mass	Dilepton and Lepton+jets	8 TeV	[9]	173.68	0.20	$+1.58 \\ -0.97$
BEST	Lepton+jets	8 TeV	[11]	172.61	0.57	± 0.90
E _b	Dilepton	8 TeV	[3]	172.29	1.17	±2.66
Single Top Enriched	Lepton+jets	8 TeV	[10]	172.60	0.77	$+0.97 \\ -0.93$
Dilepton p_T	Dilepton	8 TeV	[4]	171.70	1.10	$+2.68 \\ -3.09$
M_{T2} /MAOS	Dilepton	8 TeV	[5]	172.22	0.16	$+0.88 \\ -0.92$
M_{lb}	Dilepton	8 TeV	[6]	172.30	$+0.32 \\ -0.31$	$+1.24 \\ -1.29$

10 additional measurements using a variety of techniques, some more 'alternative' in approach than others and some with significant overlap in both dataset and analysis method

LHCtopWG Measurement Summary: August 2016

ATLAS+CMS Preliminary LHC*top* WG m_{top} summary, $\sqrt{s} = 7.8$ TeV Aug 2016 World Comb. Mar 2014, [7] stat total stat total uncertainty $m_{top} = 173.34 \pm 0.76 \ (0.36 \pm 0.67) \ GeV$ s $m_{top} \pm total (stat \pm syst)$ Ref. ATLAS, I+jets (*) 172.31 ± 1.55 (0.75 ± 1.35) 7 TeV [1] ATLAS, dilepton (*) $173.09 \pm 1.63 \ (0.64 \pm 1.50)$ 7 TeV [2] CMS, I+jets $173.49 \pm 1.06 \ (0.43 \pm 0.97)$ 7 TeV [3] CMS, dilepton $172.50 \pm 1.52 \ (0.43 \pm 1.46)$ 7 TeV [4] CMS, all jets $173.49 \pm 1.41 \ (0.69 \pm 1.23)$ 7 TeV [5] LHC comb. (Sep 2013) 173.29 ± 0.95 (0.35 ± 0.88) 7 TeV [6] World comb. (Mar 2014) 173.34 ± 0.76 (0.36 ± 0.67) 1.96-7 TeV [7] ATLAS, I+jets $172.33 \pm 1.27 \ (0.75 \pm 1.02)$ 7 TeV [8] ATLAS, dilepton 173.79 ± 1.41 (0.54 ± 1.30) 7 TeV [8] ATLAS, all jets **→** 175.1 ± 1.8 (1.4 ± 1.2) 7 TeV [9] ATLAS, single top $172.2 \pm 2.1 \ (0.7 \pm 2.0)$ 8 TeV [10] $172.99 \pm 0.81 \ (0.34 \pm 0.74)$ ATLAS, dilepton 8 TeV [11] ATLAS, all jets $173.80 \pm 1.15 \ (0.55 \pm 1.01)$ 8 TeV [12] (June 2016) I+jets, dil. ATLAS comb. 172.84 ± 0.70 (0.34 ± 0.61) 7+8 TeV [11] CMS, I+jets $172.35 \pm 0.51 \ (0.16 \pm 0.48)$ 8 TeV [13] CMS, dilepton 172.82 ± 1.23 (0.19 ± 1.22) 8 TeV [13] CMS, all jets $172.32 \pm 0.64 \ (0.25 \pm 0.59)$ 8 TeV [13] CMS, single top 172.60 ± 1.22 (0.77 ± 0.95) 8 TeV [14] CMS comb. (Sep 2015) 172.44 ± 0.48 (0.13 ± 0.47) ⊢⊭⊟ 7+8 TeV [13] [1] ATLAS-CONF-2013-046 [6] ATLAS-CONF-2013-102 [11] arXiv:1606.02179 [2] ATLAS-CONF-2013-077 [7] arXiv:1403.4427 [12] ATLAS-CONF-2016-064 (*) Superseded by results [13] Phys.Rev.D93 (2016) 072004 [3] JHEP 12 (2012) 105 [8] Eur.Phys.J.C75 (2015) 330 [4] Eur.Phys.J.C72 (2012) 2202 [9] Eur.Phys.J.C75 (2015) 158 [14] CMS-PAS-TOP-15-001 shown below the line [10] ATLAS-CONF-2014-055 [5] Eur.Phys.J.C74 (2014) 2758 165 170 175 180 185 m_{top} [GeV]

Marginalizing Uncertainties: $l + J/\psi$ Mass

CMS-PAS-TOP-15-014

8 TeV: lepton+jets & dilepton channels

Fit m_t dependence of the $l + J/\psi$ mass distribution

marginal sensitivity to JES and light quark/gluon fragmentation uncertainties

 $m_t = 173.5 \pm 3.0 \text{ (stat)} \pm 0.9 \text{ (syst) GeV}$

dominant systematics: b-fragmentation, top p_T distribution Q^2 and matching scales

measurement limited by statistics

Stephen Wimpenny UC Riverside

Marginalizing Uncertainties: Secondary Vertex Mass

CMS-PAS-TOP-12-030

8 TeV: lepton+jets & dilepton channels Fit m_t dependence of the mass formed from the charged tracks associated with the displaced vertex from the b-decay

dominant systematics:

 $m_t = 173.7 \pm 0.2 \text{ (stat)}^{+1.6} \text{ (syst) GeV}$

b-fragmentation, top p_T *distribution* Q^2 *and matching scales*

Reconstruction of J/ψ , D0 and $D^{*\pm}$ in these events \rightarrow check of b-fragmentation modeling for ttbar events

Stephen Wimpenny UC Riverside

Marginalizing Uncertainties: Dilepton Kinematics

CMS-PAS-TOP-16-002

8 TeV: dilepton eµ channel

Look for experimentally clean variable that is theoretically calculable

> most sensitive: $p_T(l^+l^-)$

Expt. limitation: lepton momentum scale (well controlled)

motivation \rightarrow *Frixione* & *Mitov JHEP* 09 (2014) 012

 $m_t = 171.7 \pm 1.1 \text{ (stat)} \pm 0.5 \text{ (expt)}^{+3.1}_{-2.5} \text{ (thy)}^{+0.8} \text{ (top } p_T) \text{ GeV}$

dominant systematics: QCD scale uncertainty, top quark p_T modeling

Caveat: analysis done only using LO multileg MC

Stephen Wimpenny UC Riverside

LHCtopWG Meeting, CERN, November $21^{st} - 22^{nd}$, 2016 3

Marginalizing Uncertainties: *b-jet Energy Spectrum*

CMS-PAS-TOP-15-002

8 TeV: dilepton eµ channel

motivation → Agashe, Franchesini, Kim Phys. Rev. D988 (2013) 057701 arXiv:1603.03445

 $m_t = 172.3 \pm 1.2 \text{ (stat)} \pm 2.6 \text{ (syst) GeV}$

dominant systematics: jet energy scale, generator modeling, top quark p_T modeling

Alternative Event Topologies: t-channel single top

fit to m(tb) $m_t = 172.6 \pm 0.8 \text{ (stat)}^{+1.0}_{-0.9} \text{ (syst) GeV}$

Dominant uncertainties: Jet energy scales & hadronization

Alternative Measurement Combination

Combination coefficients

dominant contributions: $M_{T2}/MAOS$ single top enriched lepton + SVX

Analysis	Combination
	Coefficient (%)
Lepton + J/ψ Mass	1.9
Lepton + SVX Mass	12.0
Single Top Enriched	21.0
M_{T2} /MAOS	59.0
Dilepton p_T	2.0
E_b	-1.4
End Point	5.5

Correlation coefficients

	J/ψ	SVX	Sin.Top	M_{T2} /MAOS	Dil. p_T	Eb	End Pt.
Lepton + J/ψ Mass	1.00						
Lepton + SVX Mass	0.17	1.00					
Single Top	0.07	0.11	1.00				
M_{T2} /MAOS	0.13	0.32	0.38	1.00		$\langle \rangle$	
Dilepton p_T	0.09	0.22	0.07	0.13	1.00		
E_b	0.09	0.24	0.15	0.20	0.44	1.00	
End Point	0.02	0.19	0.06	0.14	0.06	0.13	1.00

Full Run I Combination

dominant contributions:

legacy 2012 l+jets legacy 2012 alljets legacy 2011 l+jets 8 TeV single top enriched

M_{T2}/MAOS, lepton + SVX have small contributions because of strong correlations with Run I measurements

Analysis	Combination
	Coefficient (%)
2010 Dilepton	-0.1
2011 Dilepton	1.2
2011 Lepton+jets	5.9
2011 Alljets	-0.1
2012 Dilepton	1.1
2012 Lepton+jets	70.2
2012 Alljets	15.1
Lepton + J/ψ Mass	0.7
Lepton + SVX Mass	-0.5
Single Top Enriched	6.7
M_{T2} /MAOS	-1.2
Dilepton p_T	1.5
E_b	-0.6
End Point	0.3
Lepton + J/ψ Mass Lepton + SVX Mass Single Top Enriched $M_{T2}/MAOS$ Dilepton p_T E_b End Point	-0.5 6.7 -1.2 1.5 -0.6 0.3

Full Run I Combination

	10 dil.	11 dil.	11 l+jets	11 all-jets	12 dil.	12 l+jets	12 all-jets	J/ψ	SVX	Sin.Top	$M_{T2}/MAOS$	Dil. p_T	E_b	End Point
2010 Dilepton	1.00													
2011 Dilepton	0.15	1.00												
2011 Lepton+jets	0.09	0.37	1.00											
2011 Alljets	0.10	0.62	0.31	1.00										
2012 Dilepton	0.09	0.26	0.17	0.17	1.00									
2012 Lepton+jets	0.05	0.21	0.30	0.26	0.26	1.00								
2012 Alljets	0.06	0.20	0.27	0.28	0.32	0.61	1.00							
Lepton + J/ψ Mass	0.03	0.05	0.07	0.06	0.09	0.09	0.08	1.00						
Lepon + SVX Mass	0.11	0.33	0.32	0.19	0.20	0.28	0.23	0.17	1.00					
Single Top	0.05	0.13	0.14	0.14	0.34	0.21	0.24	0.07	0.11	1.00				
M_{T2} /MAOS	0.08	0.30	0.31	0.28	0.52	0.48	0.46	0.13	0.32	0.38	1.00			
Dilepton p_T	0.10	0.08	0.11	0.05	0.23	0.04	0.06	0.09	0.22	0.07	0.13	1.00		
E_b	0.07	0.07	0.16	0.10	0.27	0.10	0.13	0.09	0.24	0.15	0.20	0.44	1.00	
End Point	0.12	0.49	0.34	0.39	0.07	0.13	0.13	0.02	0.19	0.06	0.14	0.06	0.13	1.00

Note:

correlations between MT2/MAOS (SVX) and legacy values

CMS Run I Combination: Systematic Uncertainties

Combined $m_{\rm t}$ results	Run I	Alternative	Combined
	$\delta m_{\rm t}({\rm GeV})$	$\delta m_{\rm t}({ m GeV})$	$\delta m_{\rm t}({ m GeV})$
Experimental uncertainties			
Method calibration	0.03	0.08	0.04
Jet energy corrections			
 – JEC: Intercalibration 	0.01	0.06	0.02
– JEC: In situ calibration	0.12	0.16	0.12
– JEC: Uncorrelated non-pileup	0.10	0.26	0.10
Lepton energy scale	0.01	0.14	0.01
$E_{\rm T}^{\rm miss}$ scale	0.03	0.04	0.04
Jet energy resolution	0.03	0.03	0.03
b tagging	0.05	0.02	0.05
Pileup	0.06	0.07	0.06
Secondary vertex mass	n/a	0.04	< 0.01
Backgrounds	0.04	0.08	0.04
Trigger	< 0.01	< 0.01	< 0.01
Modeling of hadronization			
JEC: Flavor	0.33	0.33	0.31
b jet modeling	0.14	0.22	0.14
Modeling of perturbative QCD	\square		
PDF	0.04	0.11	0.04
Ren. and fact. scales	0.10	0.30	0.10
ME-PS matching threshold	0.08	0.21	0.08
ME generator	0.11	0.07	0.11
Single top modeling	n/a	0.04	0.01
Top quark $p_{\rm T}$	0.02	0.21	0.02
Modeling of soft QCD			
Underlying event	0.11	0.10	0.11
Color reconnection modeling	0.10	0.11	0.10
Uncertainties (GeV)			
Total systematic	0.47	0.72	0.46
Statistical	0.13	0.21	0.13
Total Uncertainty	0.48	0.75	0.48

Top Quark Mass – LHC Summary

Stephen Wimpenny UC Riverside

CMS Run I Combination : Tevatron (D0) Results

CMS: Phys. Rev. D93 (2016) 072004

Stephen Wimpenny UC Riverside

41

LHC**top**WG

use mass dependence of measured cross section and NNLO prediction to find m_t^{pole}

CMS arXiv:1603.02303

$$m_t^{\text{pole}} = 173.8^{+1.7}_{-1.8} \text{ GeV}$$

ATLAS EPJC 74 (2014) 3109

 $m_t^{\text{pole}} = 172.9^{+2.8}_{-2.6} \text{ GeV}$

Results from combined fit to 7 and 8 TeV Cross Sections

Top Quark Pole Mass – (lepton+jets) + 1 jet

Normalized ttbar + 1 *jet differential cross section* \rightarrow *top quark pole mass*

Dominant uncertainties: statistics (only 7 TeV data), Jet energy scales & knowledge ISR/FSR and Q² scale

 $m_t^{pole} = 173.7 \pm 1.5 \text{ (stat)} \pm 1.4 \text{ (syst)}^{+1.0}_{-0.5} \text{ (thy) GeV}$

Top Quark Pole Mass – (lepton+jets) + 1 jet

Normalized ttbar + 1 *jet differential cross section* \rightarrow *top quark pole mass*

Dominant uncertainties: ttbar + jet modeling (POWHEG) ME/PS matching & knowledge of Q² scale

 $m_t^{\text{pole}} = 169.9 \pm 1.1 \text{ (stat)}^{+2.5}_{-3.1} \text{ (syst)}^{+3.6}_{-1.6} \text{ (thy) GeV}$

Top Quark Pole Mass – Summary

45

Precision limited by knowledge of:
a.) Cross Sections:
LHC beam energy & luminosity, pdf's & α_s
b.) ttbar+1 jet:
Jet Energy Scales,
ISR/FSR modeling and Q² scale

Not competitive in precision with kinematic mass reconstruction but it does produce a theoretically simpler mass observable