## W helicity: latest LHC results

10<sup>th</sup> Open LHC*Top*WG meeting: Nov. 21<sup>st</sup>–23<sup>rd</sup> 2016

<u>María Moreno Llácer</u> 2<sup>nd</sup> Institute of Physics, Georg-August-Universität Göttingen



22/11/16 María Moreno Llácer – W helicity



- Wtb vertex Lagrangian and sensitive observables to probe it
- W helicity using cosθ<sub>l</sub>\* distributions
   analysis methods
- Latest LHC results
  - \* ATLAS 8 TeV: single lepton results
  - \* CMS 8 TeV: single lepton results
  - \* Comparisons between them



## Wtb vertex

W

 $\bar{\nu}$ 

#### Wtb vertex Lagrangian:

- . Top quark decay:  $t \rightarrow Wb$  ( $\approx 100\%$ )
- .SM: Weak coupling with (V-A) structure
  - .Only coupling to left-handed fermions

$$L_{Wtb} = -\frac{g}{\sqrt{2}} \overline{u}_b \gamma^{\mu} (V_L P_L + V_R P_R) u_t W^+_{\mu} - \frac{g}{\sqrt{2}} \overline{u}_b \frac{i\sigma^{\mu\nu}q_{\nu}}{M_W} (g_L P_L + g_R P_R) u_t W^+_{\mu} + \text{h.c.}$$

$$V_{L,R} \text{ and } g_{L,R}$$
left and right - han
$$SM \Rightarrow V_{L=}V_{tb} \sim 1 \qquad V_R = g_R = 0 \qquad \text{Right-handed contribution?}$$

Right-handed contribution? **Tensor couplings?** 

## nded vector and tensor couplings

#### Angular observables to probe the *Wtb* vertex:



22/11/16

→ For unpolarised top quark decays, the only meaningful direction in the top RF is the one of the W boson momentum (q)

Nucl.Phys. B812 (2009) 181-204

 $\rightarrow$  For polarised (spin direction  $s_t$ ) top quarks produced via electroweak interaction, further directions may be considered: N and T.

→ Three angular distributions: 
$$\theta_{I}^{*}(q,I), \theta_{I}^{N}(N,I)$$
 and  $\theta_{I}^{T}(T,I)$ 

$$\frac{1}{\Gamma} \frac{d\mathbf{I}}{d\cos\theta_l^X} = \frac{3}{8} (1 + \cos\theta_l^X)^2 \mathbf{F}_+^X + \frac{3}{8} (1 - \cos\theta_l^X)^2 \mathbf{F}_-^X + \frac{3}{4} \sin^2\theta_l^X \mathbf{F}_0^X$$

$$A_{FB}^{X} = \frac{N(\cos\theta_{l}^{X} > 0) - N(\cos\theta_{l}^{X} < 0)}{N(\cos\theta_{l}^{X} > 0) + N(\cos\theta_{l}^{X} < 0)} \propto \left(F_{+}^{X} - F_{-}^{X}\right)$$

María Moreno Llácer – W helicity



María Moreno Llácer – W helicity



## W helicity in tt events ( $\cos \theta_{I}^{*}$ )

W bosons from top quark decays  $\rightarrow$  3 possible polarizations (helicity fractions): left-handed F<sub>1</sub> right bonded **F** 

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^*\right) F_0 + \frac{3}{8} \left(1 - \cos\theta^*\right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 F_R \quad \text{longitudinal } \mathsf{F}_0$$

Sensitive observable:  $\cos\theta_{l}^{*}$  being  $\theta_{l}^{*}$  the angle between the down-type fermion (charged lepton or down-type quark) from the W boson decay and the reversed direction of the top quark, both in the W boson rest frame.





## **Analysis methods**

#### **Angular asymmetries**

F<sub>i</sub>



#### **Templates**

0.5

cos **θ**\*

#### Reweighting



The number of expected events in a given bin is modified by reweighting each event in that bin by a factor *w*.

by reweighting MC SM tt events

Dedicated tt signal templates for

dedicated  $F_0$ ,  $F_R \& F_L$  MC samples at LO

a specific F<sub>i</sub> are created.

\* ATLAS 7 TeV:

\* ATLAS 8 TeV:

GEORG-AUGUST-UNIVERSITÄT





W boson helicity fractions

## Latest LHC results

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN



## Latest LHC results

GEORG-AUGUST-UNIVERSITÄT

7 TeV 8 TeV ttbar single lepton & dilepton ttbar single lepton 1.04 fb<sup>-1</sup> [JHEP 1206 (2012) 088] 20.2 fb<sup>-1</sup> [Paper in preparation] ATLAS  $F_0 = 0.67 \pm 0.03 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$  $F_0 = 0.709 \pm 0.012 \text{ (stat.*)} \pm 0.015 \text{ (syst.)}$  $F_1 = 0.32 \pm 0.02$  (stat.)  $\pm 0.03$  (syst.)  $F_1 = 0.299 \pm 0.008 \text{ (stat.*)} \pm 0.013 \text{ (syst.)}$ **R**  $F_{R} = 0.01 \pm 0.01 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$  $F_{R} = -0.008 \pm 0.006 \text{ (stat.*)} \pm 0.012 \text{ (syst.)}$ ttbar single lepton 19.8 fb<sup>-1</sup> [PLB 762 (2016) 512-534]  $F_0 = 0.681 \pm 0.012 \text{ (stat.)} \pm 0.023 \text{ (syst.)}$  $F_1 = 0.323 \pm 0.008 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$  $F_{R} = -0.004 \pm 0.005 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$ ttbar single lepton ttbar dilepton 5.0 fb<sup>-1</sup> [JHEP 1310 (2013) 167] 19.7 fb<sup>-1</sup> [CMS-PAS-TOP-14-017] **CMS**  $F_0 = 0.682 \pm 0.030 \text{ (stat.)} \pm 0.033 \text{ (syst.)}$   $F_0 = 0.653 \pm 0.016 \text{ (stat.)} \pm 0.024 \text{ (syst.)}$  $F_{L} = 0.310 \pm 0.022 \text{ (stat.)} \pm 0.022 \text{ (syst.)}$  $F_1 = 0.329 \pm 0.009 \text{ (stat.)} \pm 0.025 \text{ (syst.)}$  $F_{R} = 0.018 \pm 0.008 \text{ (stat.)} \pm 0.026 \text{ (syst.)}$  $F_{R} = 0.008 \pm 0.012 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$ Single top 19.7 fb<sup>-1</sup> [JHEP 01 (2015) 053]  $F_0 = 0.720 \pm 0.039 \text{ (stat.)} \pm 0.037 \text{ (syst.)}$  $F_1 = 0.298 \pm 0.028 \text{ (stat.)} \pm 0.032 \text{ (syst.)}$  $F_{R} = -0.018 \pm 0.019 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$ 



## **ATLAS 8 TeV single lepton**

## **Event selection**

- Single lepton triggers
- Exactly one lepton (e/µ) with  $p_T$  > 25 GeV and  $|\eta|$ <2.5
- $\geq$  4 jets with p\_T > 25 GeV and  $|\eta|{<}2.5$ 
  - ≥ 1 b-tagged
- $E_T^{miss}$  > 20 GeV and  $E_T^{miss}$  +  $m_T^W$  > 60 GeV for  $N_{b-tag}$ =1
- Cut on likelihood of reconstruction algorithm: Log 2 > -48

#### **Event reconstruction**

using an "extended kinematic likelihood fit" with KLFitter (referred to as "normalized event probability  $p_i$ ) including  $p_T$  and *b*-tag weight of jets (for up/down-type quark separation):

 $\rightarrow$  Optimized jet feeding:

·2 jets with highest b-tag weight
·2/3 further jets with highest p<sub>T</sub>
·Best of 5! = 120 (24 for n<sub>iet</sub> = 4) permutations is selected

$$\mathcal{L} = BW(m_{q1q2q3}|m_t, \Gamma_t) \cdot BW(m_{q1q2}|m_W, \Gamma_W) \cdot BW(m_{q4\ell\nu}|m_t, \Gamma_t) \cdot BW(m_{\ell\nu}|m_W, \Gamma_W)$$
$$\cdot \prod_{i=1}^4 W_{\text{jet}}(E_i^{\text{meas}}|E_i) \cdot W_\ell(E_\ell^{\text{meas}}|E_\ell) \cdot W_{\text{miss}}(E_x^{\text{miss}}|p_x^{\nu}) \cdot W_{\text{miss}}(E_y^{\text{miss}}|p_y^{\nu})$$

$$p_i = \frac{\mathcal{L}_i \prod_j \Delta p_{i,j}}{\sum_i \mathcal{L}_i \prod_j \Delta p_{i,j}}$$

22/11/16

→ leptonic analyzer
 → hadronic analyzer



## **ATLAS 8 TeV single lepton**

units 0.18

-0.6

-0.4

-0.2

 $W_{L} = \frac{\frac{3}{8}(1 - \cos\theta_{\text{per}}^{*})^{2}}{f_{L} \cdot \frac{3}{8}(1 - \cos\theta_{\text{per}}^{*})^{2} + f_{0} \cdot \frac{3}{4}(1 - \cos^{2}\theta_{\text{per}}^{*}) + f_{R} \cdot \frac{3}{8}(1 + \cos\theta_{\text{per}}^{*})^{2}}$ 

 $W_{0} = \frac{\frac{3}{4}(1 - \cos^{2}\theta_{\text{geh}}^{*})}{f_{L} \cdot \frac{3}{8}(1 - \cos^{2}\theta_{\text{geh}}^{*})^{2} + f_{0} \cdot \frac{3}{4}(1 - \cos^{2}\theta_{\text{geh}}^{*}) + f_{R} \cdot \frac{3}{8}(1 + \cos^{2}\theta_{\text{geh}}^{*})^{2}}$ 

3 (1 ) (1)2

## **Template fit method (using reweighting)**

GÖTTINGEN

GEORG-AUGUST-UNIVERSITÄT

- Signal templates (3: one for each helicity state) No dedicated F<sub>i</sub> simulated samples available. Instead, reweighting SM ttbar sample using analytic expression.
- Background templates (5: W+light, c, bb/cc jets, QCD, rem.bkg.)
- Binned likelihood fit:

$$\mathscr{L} = \prod_{k=1}^{N_{\text{bins}}} \text{Poisson}(n_{\text{data},k}, n_{\text{exp},k}) \prod_{j=1}^{N_{\text{bkg}}} \frac{1}{\sqrt{2\pi}\sigma_{\text{bkg},j}} \exp\left(\frac{-(n_{\text{bkg},j} - \hat{n}_{\text{bkg},j})^2}{2\sigma_{\text{bkg},j}^2}\right) \left[ \frac{W_R = \frac{\overline{8}(1 + \cos\theta_{\text{geh}}^* - 1)^2}{f_L \cdot \frac{3}{8}(1 - \cos\theta_{\text{geh}}^* - 1)^2}}{\frac{1}{\sqrt{2\pi}\sigma_{\text{bkg},j}} + f_R \cdot \frac{3}{8}(1 + \cos\theta_{\text{geh}}^* - 1)^2}} \right]$$

 $n_{\text{exp}} = n_0 + n_{\text{L}} + n_{\text{R}} + n_{W+\text{light}} + n_{W+c} + n_{W+bb/cc} + n_{\text{fake}} + n_{\text{rem. bkg.}}$ 

R.

#### - Fit parameters:

22/11/16

Yields of signal  $(n_0, n_1, n_R)$  and backgrounds (W+jets, fakes, rem.bkg.)

allowed to float within their norm. unc.

| owed to float within their norm. unc. |                                                                                                      |  |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Norm. unc.                            | Arbitr<br>0.14                                                                                       |  |  |  |
| 5 %                                   | 0.12                                                                                                 |  |  |  |
| 25 %                                  | 0.08                                                                                                 |  |  |  |
| 7 %                                   | 0.06                                                                                                 |  |  |  |
| 30 %                                  | 0.04                                                                                                 |  |  |  |
| 16 % / 17 %<br>(≥ 2b, ≥1b)            | 0.02                                                                                                 |  |  |  |
|                                       | Norm. unc.         5 %         25 %         7 %         30 %         16 % / 17 %         (≥ 2b, ≥1b) |  |  |  |



$$F_{\mathbf{i}} = \frac{N_i}{N_0 + N_L + N_R}, \quad n_i = \epsilon_i^{\text{sel}} N_i \quad \text{for } \mathbf{i} = 0, \text{ L},$$

0.8

cos θ'

Right handed

Longitudina



## **ATLAS 8 TeV single lepton**

#### **Results**

- In total, 8 orthogonal channels; all possible combinations studied.
- Channel combination using simultaneous fit on the "glued-templates" (more bins).
- Best results obtained for each analyzer:
  - ·Leptonic:  $[e + \mu] \times [\geq 2b] \rightarrow most sensitive / best result$
  - ·Hadronic:  $[e + \mu] \times [1b + \ge 2b]$
  - ·Overall best combination: same as leptonic
  - ·Main syst. unc.: jet energy scale and resolution, ttbar modelling



$$\begin{split} F_0 &= 0.709 \pm 0.012 \text{ (stat.+bkg.norm)} \pm 0.015 \text{ (syst.)} \\ F_L &= 0.299 \pm 0.008 \text{ (stat.+bkg.norm)} \pm 0.013 \text{ (syst.)} \\ F_R &= -0.008 \pm 0.006 \text{ (stat.+bkg.norm)} \pm 0.012 \text{ (syst.)} \end{split}$$

$$\begin{split} &\mathsf{F}_0 = 0.659 \pm 0.010 \; (\text{stat.+bkg.norm}) \pm 0.053 \; (\text{syst.}) \\ &\mathsf{F}_{\mathsf{L}} = 0.281 \pm 0.021 \; (\text{stat.+bkg.norm}) \pm 0.065 \; (\text{syst.}) \\ &\mathsf{F}_{\mathsf{R}} = 0.061 \pm 0.022 \; (\text{stat.+bkg.norm}) \pm 0.105 \; (\text{syst.}) \end{split}$$



## **CMS 8 TeV single lepton**

## **Event selection**

- Single lepton triggers
- Exactly one lepton (e/µ) with  $p_{\rm T}$  > 30/26 GeV and  $|\eta|$ <2.5/2.1
- At least 4 jets with  $|\eta|{<}2.4$ 
  - increased  $p_{T}$  cut for first 4 jets: 55, 45, 25 and 20 GeV
  - at least two of them b-tagged (with  $p_T > 20 \text{ GeV}$ )
- Cut on  $m_T^W$ : 30 <  $m_T^W$  < 200 GeV

## **Event reconstruction**

- using a kinematic fit:

 $_{-}p_{z}^{\nu}$  determination using top & W masses constraints \_jets and lepton momentum resolution taken into account

→ Final sample composition: 82% (e/µ+jets), 10% (other ttbar decays, with  $\tau$ ), 3.5% (single top), rest (other bkgs.)

→ Build  $\cos \theta_l^*$  for the leptonic analyzer

(for illustration, absolute value for hadronic analyzer also shown).





#### María Moreno Llácer – W helicity



## **CMS 8 TeV single lepton**

#### **Results**

- Electron & muon channel are combined using BLUE.

Stat.correlation Channel  $F_0 \pm (\text{stat}) \pm (\text{syst})$  $F_L \pm (\text{stat}) \pm (\text{syst})$  $F_R \pm (\text{stat}) \pm (\text{syst})$  $\rho_{0,L}$ -0.950e + jets $0.705 \pm 0.013 \pm 0.037$  $0.304 \pm 0.009 \pm 0.020$  $-0.009 \pm 0.005 \pm 0.021$  $0.685 \pm 0.013 \pm 0.024$  $0.328 \pm 0.009 \pm 0.014$  $-0.013 \pm 0.005 \pm 0.017$ -0.957 $\mu$  + jets  $0.681 \pm 0.012 \pm 0.023$  $0.323 \pm 0.008 \pm 0.014$  $-0.004 \pm 0.005 \pm 0.014$ + jets -0.959

19.8 fb<sup>-1</sup> (8TeV) ட<sup>்</sup> 0.38 e+jets CMS μ**+jets** Ο 0.36 I+jets combined SM 0.34 0.32 0.30 95% CL 68% CL 0.28 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 Fo

with syst.  $\rho_{0,L} = -0.87$ 

| Main syst. unc.      | ΔF <sub>0</sub> | $\Delta F_L$ |
|----------------------|-----------------|--------------|
| Jet energy scale     | 0.005           | 0.003        |
| W+jets bkg.          | 0.007           | 0.001        |
| Fake leptons bkg.    | 0.008           | 0.001        |
| top quark mass       | 0.010*          | 0.007*       |
| tt ME scales         | 0.012*          | 0.007*       |
| tt PS scale          | 0.009*          | 0.007*       |
| tt ME, PS & hadr. MC | 0.006           | 0.004        |
| Total                | 0.023           | 0.014        |

**Systematic uncertainties** 

\* Stat. precision of the limited sample size is assigned as syst. variation.



Start with the combination in the single lepton channel.

- Both analyses use the same sensitive variable and channel: leptonic analyzer with ≥ 2b jets.
- Central values are quite close.
- Both comparable within the uncertainties with the SM predictions.
- Differences in the treatment and list of syst. unc. → differences in correlations btw. fractions and size of the uncertainties.
- Syst. uncertainty for ATLAS is smaller.





-  $el/\mu$  channel combination using simultaneous

- Bkg. normalisations: free floating parameters

- Syst. unc. estimated using ensemble tests:

fit on the "glued-templates" (more bins).

repeat fit using nominal templates and

in the fit (unc. in table below).

syst. varied pseudo-data.

## **Comparisons: strategy**

## ATLAS

#### CMS - Rev

- Reweighting also for single top quark events.
- $el/\mu$  channel combination with BLUE.
- Bkg. normalisations are fixed in the fit.
- Syst. effects\* estimated changing the signal and bkg. templates and fitting to (nominal) data.
- Some differences in list of MC samples and syst. unc.
- \* ttbar signal modelling → ATLAS: Powheg(NLO)+Py6, CMS: MG5 (LO≤3p)+Py6
- \* bkg. norm. unc.
- \* jet vertex fraction (to suppress pile-up jets), jet reco. eff.

| Antes                                         |                            |
|-----------------------------------------------|----------------------------|
| Background                                    | Norm. unc.                 |
| W + light jets                                | 5 %                        |
| W + c                                         | 25 %                       |
| W + cc/bb                                     | 7 %                        |
| Fake leptons                                  | 30 %                       |
| Remaining background (Single top, Z+jets, VV) | 16 % / 17 %<br>(≥ 2b, ≥1b) |

| MS/               |                                  |
|-------------------|----------------------------------|
| Background        | Norm. unc.                       |
| Z + jets          | ±30 %                            |
| W + light jets    | ±30 %                            |
| W + heavy flavour | +100% / -50 %                    |
| Fake leptons      | ±50% (e), $^{+40\%}_{-50\%}$ (µ) |
| Single top        | ±30 %                            |

\* Stat. precision of the limited sample size is assigned as syst. variation if it is larger than the latter.



## **Comparisons: systematic unc.**

| <b>0</b>                                                                                      | ATL                                     | .AS                                    | CMS                                                 |                                                     |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--|
| Source                                                                                        | $F_0$ $F_L$                             |                                        | Fo                                                  | FL                                                  |  |
|                                                                                               |                                         | Reconstructed objects                  |                                                     |                                                     |  |
| Jet energy scale                                                                              | +0.0063 / -0.0033                       | +0.0028 / -0.0025                      | ±0.005                                              | ±0.003                                              |  |
| Jet energy resolution                                                                         | +0.0062 / -0.0059                       | +0.0048 / -0.0018                      | ±0.003                                              | ±0.003                                              |  |
| b-tagging efficiency                                                                          | +0.0017 / -0.0021                       | +0.0012 / -0.0013                      | ±0.001                                              | <0.001                                              |  |
| Electron/Muon efficiency                                                                      | +0.0028 / -0.0030<br>+0.0024 / -0.0029  | +0.0018 / -0.0020<br>+0.0013 / -0.0015 | ±0.001                                              | ±0.001                                              |  |
| Jet vertex fraction                                                                           | +0.0036 / -0.0017                       | +0.0019 / -0.0013                      |                                                     |                                                     |  |
| Jet reconstruction efficiency                                                                 | +0.0002 / -0.0002                       | <0.0001 / <0.0001                      |                                                     |                                                     |  |
|                                                                                               |                                         | Signal modelling                       |                                                     |                                                     |  |
| Top quark mass                                                                                | ±0.0017                                 | ±0.0050                                | ±0.010*                                             | ±0.007*                                             |  |
| Showering & hadronisation                                                                     | ±0.0019<br>(P+P6 vs                     | ±0.0019<br>. P+HW)                     | ±0.006                                              | ±0.004                                              |  |
| ME generator                                                                                  | ±0.0025 ±0.0032<br>(P+HW vs. MC@NLO+HW) |                                        | (MG5+Py6 vs. MC@NLO+HW)                             |                                                     |  |
| PDF                                                                                           | ±0.0033                                 | ±0.0042                                | ±0.002                                              | ±0.001                                              |  |
| ISR/FSR (PP6 with varied<br>h <sub>damp</sub> , μ <sub>R</sub> & μ <sub>F</sub> , P2012 tune) | ±0.0033                                 | ±0.0058                                |                                                     |                                                     |  |
| $\mu_{\text{R}}$ & $\mu_{\text{F}}$ scales (MG5 LO)                                           |                                         |                                        | ±0.012*                                             | ±0.007*                                             |  |
| Matching scale (MG5+Py6)                                                                      |                                         |                                        | ±0.009*                                             | ±0.007*                                             |  |
|                                                                                               |                                         | Method uncertainty                     |                                                     |                                                     |  |
| MC statistics                                                                                 | ±0.0091                                 | ±0.0056                                | ±0.002                                              | ±0.001                                              |  |
| Total systematics                                                                             | +0.015 / -0.014                         | +0.013 / -0.012                        | ±0.023** (w. bkg. norm.)<br>±0.020 (wo. bkg. norm.) | ±0.014** (w. bkg. norm.)<br>±0.014 (wo. bkg. norm.) |  |
| 2 Stat. + bkg. norm.                                                                          | ±0.012                                  | ±0.008                                 | ±0.012** (stat.)<br>±0.016 (stat.+bkg.norm)         | ±0.008** (stat.)<br>±0.008 (stat.+bkg.norm)         |  |

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

## Limits on anomalous couplings



22/11/16

 $F_0 = 0.709 \pm 0.012 \text{ (stat.+bkg.norm)} \pm 0.015 \text{ (syst.)}$   $F_L = 0.299 \pm 0.008 \text{ (stat.+bkg.norm)} \pm 0.013 \text{ (syst.)}$  $F_R = -0.008 \pm 0.006 \text{ (stat.+bkg.norm)} \pm 0.012 \text{ (syst.)}$ 

$$\rho_{0,L} = -0.55, \ \rho_{0,R} = -0.75, \ \rho_{L,R} = +0.16$$

Re(g<sub>R</sub>)

-0.4

-0.4

-0.2

0.0

0.2

0.4 Re(g<sub>L</sub>)



| ATU | 5                     |                             |
|-----|-----------------------|-----------------------------|
|     | Coupling              | 95% CL limit                |
|     | V <sub>R</sub>        | [-0.24, 0.31]               |
|     | g∟                    | [-0.14, 0.11]               |
|     | <b>g</b> <sub>R</sub> | [-0.02, 0.06], [0.74, 0.78] |
|     | •                     |                             |





20

## Both ATLAS and CMS have new results in ttbar lepton+jets using leptonic analyzer → combination exercise could be started soon (person power?)

- Both comparable within the uncertainties with the SM predictions.
- Differences in strategy, correlations btw. fractions and size of the uncertainties:

### ATLAS

-  $el/\mu$  channel combination using simultaneous fit on the "glued-templates" (more bins).

- Bkg. norm.: free floating parameters in the fit
  - Differences in estimation of syst. unc.:
    - \* strategy
    - \* ttbar signal modelling
    - \* bkg. normalisation uncertainties
    - \* jet vertex fraction (to suppress pile-up jets), jet reco. eff.

### CMS

- Reweighting also for single top quark events.
- $el/\mu$  channel combination with BLUE.
- Bkg. normalisations are fixed in the fit.







# **BACK-UP**



# GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Comparisons: signal & bkg. modelling

| ATLAS |              |                                                  |                                                                                                                             |
|-------|--------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| X     | Process      | MC sample (ME+PS)                                | Normalisation                                                                                                               |
|       | tt           | Powheg (NLO, CT10 PDF)+Pythia6                   | NNLO+NNLL                                                                                                                   |
|       | Single top   | Powheg (NLO, CT10 PDF)+Pythia6                   | aNNLO                                                                                                                       |
|       | W+jets       | Alpgen (LO multileg ≤5p, CTEQ6L1 PDF) + Pythia6  | Data-driven: ttbar charge asym.<br>K_light = 0.80 +- 0.04 (5%)<br>K_c = 1.07 +- 0.27 (25%)<br>K_bb/K_cc = 1.50 +- 0.11 (7%) |
|       | Z+jets       | Alpgen (LO multileg ≤5p, CTEQ6L1 PDF) + Pythia6  | NNLO                                                                                                                        |
|       | Dibosons     | Sherpa (LO multileg ≤3p, CT10 PDF) + Sherpa      | NLO                                                                                                                         |
|       | Fake leptons |                                                  | Data-driven: matrix method                                                                                                  |
| CM.   | 5            |                                                  |                                                                                                                             |
|       | Process      | MC sample (ME+PS)                                | Normalisation                                                                                                               |
|       | tt           | MadGraph (LO multileg ≤3p, CTEQ6L1 PDF) +Pythia6 | NNLO+NNLL                                                                                                                   |
|       | Single top   | Powheg (NLO, CTEQ6M PDF)+Pythia6                 | aNNLO                                                                                                                       |

| Oligie top   |                                                  | UNINEO      |
|--------------|--------------------------------------------------|-------------|
| W+jets       | MadGraph (LO multileg ≤?p, CTEQ6L1 PDF) +Pythia6 | NNLO        |
| Z+jets       | MadGraph (LO multileg ≤?p, CTEQ6L1 PDF) +Pythia6 | NNLO        |
| Fake leptons | Pythia6                                          | Data-driven |



6

## **Comparisons: systematic unc.**

| Uncertainties                                |                       |                                        |                                            |                                       |  |  |  |  |
|----------------------------------------------|-----------------------|----------------------------------------|--------------------------------------------|---------------------------------------|--|--|--|--|
| Sc.                                          | ource                 | Lep                                    | Leptonic analyzer ≥ 2 b-tags               |                                       |  |  |  |  |
| F <sub>0</sub> F <sub>L</sub> F <sub>R</sub> |                       |                                        |                                            |                                       |  |  |  |  |
|                                              | Reconstructed objects |                                        |                                            |                                       |  |  |  |  |
| Jet energ                                    | gy scale              | +0.0063 / -0.0033                      | +0.0028 / -0.0025                          | +0.0037 / -0.0014                     |  |  |  |  |
| Jet energ                                    | gy reso.              | +0.0062 / -0.0059                      | +0.0048 / -0.0018                          | +0.0071 / -0.0067                     |  |  |  |  |
| b tagging                                    | g eff.                | +0.0017 / -0.0021                      | +0.0012 / -0.0013                          | +0.0011 / -0.0012                     |  |  |  |  |
| Ele/Muo                                      | n eff                 | +0.0028 / -0.0030<br>+0.0024 / -0.0029 | +0.0018 / -0.0020<br>+0.0013 / -0.0015     | +0.0011 / -0.0011<br>+0.0010/ -0.0015 |  |  |  |  |
| Jet verte                                    | x fraction            | +0.0036 / -0.0017                      | +0.0019 / -0.0013                          | +0.0017 / -0.0006                     |  |  |  |  |
| Jet reco.                                    | Eff.                  | +0.0002 / -0.0002                      | 0002 / -0.0002 <0.0001 / <0.0001 +0.0002 / |                                       |  |  |  |  |
|                                              |                       | Signal mo                              | delling                                    |                                       |  |  |  |  |
| Top quar                                     | 'k mass               | ±0.0017                                | ±0.0050                                    | ±0.0033                               |  |  |  |  |
| PS & Ha                                      | dr.                   | ±0.0019                                | ±0.0019 ±0.0019                            |                                       |  |  |  |  |
| ME gene                                      | erator                | ±0.0025                                | 5 ±0.0032 ±0.                              |                                       |  |  |  |  |
| ISR/FSR                                      | 2                     | ±0.0033                                | ±0.0058                                    | ±0.0034                               |  |  |  |  |
| PDF                                          |                       | ±0.0033                                | ±0.0042                                    | ±0.0009                               |  |  |  |  |
|                                              |                       | Method und                             | certainty                                  |                                       |  |  |  |  |
| Template                                     | e statistics          | ±0.0091                                | ±0.0056                                    | ±0.0044                               |  |  |  |  |
| Total sy                                     | stematics             | +0.015 / -0.014                        | +0.013 / -0.012                            | +0.013 / -0.012                       |  |  |  |  |
| Stat. + b                                    | kg. norm.             | ±0.012                                 | ±0.008                                     | ±0.006                                |  |  |  |  |

| CMS                        |                   |                        |
|----------------------------|-------------------|------------------------|
|                            | $\ell$ + jets     |                        |
|                            | $\pm \Delta F_0$  | $\pm \Delta F_{\rm L}$ |
| JES                        | 0.005             | 0.003                  |
| JER                        | 0.003             | 0.003                  |
| b tagging eff.             | 0.001             | <10 <sup>-3</sup>      |
| Lepton eff.                | 0.001             | 0.001                  |
| Single top normal          | 0.003             | 0.001                  |
| W + jets bkg.              | 0.007             | 0.001                  |
| DY + jets bkg.             | 0.001             | <10 <sup>-3</sup>      |
| Multijet bkg.              | 0.008             | 0.001                  |
| Pileup                     | 0.001             | <10 <sup>-3</sup>      |
| Top quark mass             | 0.010             | 0.007                  |
| t <del>t</del> scales      | 0.012             | 0.007                  |
| tt match. scale            | 0.009             | 0.007                  |
| tt MC and hadron           | 0.006             | 0.004                  |
| tt p <sub>T</sub> reweight | <10 <sup>-3</sup> | 0.002                  |
| Limited MC size            | 0.002             | 0.001                  |
| PDF                        | 0.002             | 0.001                  |
| Total                      | 0.023             | 0.014                  |





# Systematic unc. Jet energy scale +0.0063 / -0.0033 - using ensemble tests Jet energy reso. +0.0062 / -0.0059 - pseudo-data for Jet energy reso. +0.0017 / -0.0021 - repeat fit using Ela/Muon eff +0.0028 / -0.0030

repeat fit using nominal templates and syst. varied pseudodata
bkg. norm. directly evaluated in the fit

| Source              | Ler                                    | otonic analyzer ≥ 2 b-                 | tags                                  | Hadronic analyzer 1 b + ≥ 2 b-tags    |                                        |                                        |  |
|---------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|--|
|                     | Fo                                     | FL                                     | F <sub>R</sub>                        | Fo                                    | F <sub>0</sub> F <sub>L</sub>          |                                        |  |
|                     |                                        | Reco                                   | onstructed objects                    |                                       |                                        |                                        |  |
| Jet energy scale    | +0.0063 / -0.0033                      | +0.0028 / -0.0025                      | +0.0037 / -0.0014                     | +0.0069 / -0.0070                     | +0.012 / -0.008                        | +0.014 / -0.005                        |  |
| Jet energy reso.    | +0.0062 / -0.0059                      | +0.0048 / -0.0018                      | +0.0071 / -0.0067                     | +0.027 / -0.031                       | +0.033 / -0.041                        | +0.057 / -0.071                        |  |
| b tagging eff.      | +0.0017 / -0.0021                      | +0.0012 / -0.0013                      | +0.0011 / -0.0012                     | +0.029 / -0.031                       | +0.013 / -0.014                        | +0.034 / -0.035                        |  |
| Ele/Muon eff        | +0.0028 / -0.0030<br>+0.0024 / -0.0029 | +0.0018 / -0.0020<br>+0.0013 / -0.0015 | +0.0011 / -0.0011<br>+0.0010/ -0.0015 | +0.0025 / -0.0021<br>+0.0026/ -0.0037 | +0.0028 / -0.0038<br>+0.0046 / -0.0035 | +0.0051 / -0.0058<br>+0.0072 / -0.0072 |  |
| Jet vertex fraction | +0.0036 / -0.0017                      | +0.0019 / -0.0013                      | +0.0017 / -0.0006                     | +0.013 / -0.009                       | +0.0012 / -0.0046                      | +0.011 / -0.005                        |  |
| Jet reco. Eff.      | +0.0002 / -0.0002                      | <0.0001 / <0.0001                      | +0.0002 / -0.0002                     | +0.0008 / -0.0008                     | +0.0004 / -0.0004                      | +0.0011 / -0.0011                      |  |
|                     |                                        | S                                      | ignal modelling                       | -                                     |                                        |                                        |  |
| Top quark mass      | ±0.0017                                | ±0.0050                                | ±0.0033                               | ±0.0033                               | ±0.0100                                | ±0.0068                                |  |
| PS & Hadr.          | ±0.0019                                | ±0.0019                                | ±0.0037                               | ±0.015                                | ±0.001                                 | ±0.014                                 |  |
| ME generator        | ±0.0025                                | ±0.0032                                | ±0.0057                               | ±0.016                                | ±0.024                                 | ±0.040                                 |  |
| ISR/FSR             | ±0.0033                                | ±0.0058                                | ±0.0034                               | ±0.018                                | ±0.039                                 | ±0.057                                 |  |
| PDF                 | ±0.0033                                | ±0.0042                                | ±0.0009                               | ±0.0010                               | ±0.0020                                | ±0.0020                                |  |
| Method uncertainty  |                                        |                                        |                                       |                                       |                                        |                                        |  |
| Template statistics | ±0.0091                                | ±0.0056                                | ±0.0044                               | ±0.0076                               | ±0.0016                                | ±0.0016                                |  |
| Total systematics   | +0.015 / -0.014                        | +0.013 / -0.012                        | +0.013 / -0.012                       | +0.052 / -0.054                       | +0.063 / -0.067                        | +0.100 / -0.110                        |  |
| Stat. + bkg. norm.  | ±0.012                                 | ±0.008                                 | ±0.006                                | ±0.010                                | ±0.021                                 | ±0.022                                 |  |



#### Systematic uncertainties

|                           | e + jets         |                        | $\mu$ + jets      |                        | $\ell$ + jets     |                    |
|---------------------------|------------------|------------------------|-------------------|------------------------|-------------------|--------------------|
|                           | $\pm \Delta F_0$ | $\pm \Delta F_{\rm L}$ | $\pm \Delta F_0$  | $\pm \Delta F_{\rm L}$ | $\pm \Delta F_0$  | $\pm \Delta F_{L}$ |
| JES                       | 0.004            | 0.003                  | 0.005             | 0.003                  | 0.005             | 0.003              |
| JER                       | 0.001            | 0.002                  | 0.004             | 0.003                  | 0.003             | 0.003              |
| b tagging eff.            | 0.001            | <10 <sup>-3</sup>      | 0.001             | <10 <sup>-3</sup>      | 0.001             | <10 <sup>-3</sup>  |
| Lepton eff.               | 0.001            | 0.002                  | 0.001             | 0.001                  | 0.001             | 0.001              |
| Single top normal.        | 0.002            | <10 <sup>-3</sup>      | 0.003             | 0.001                  | 0.003             | 0.001              |
| W + jets bkg.             | 0.008            | 0.001                  | 0.007             | 0.001                  | 0.007             | 0.001              |
| DY + jets bkg.            | 0.002            | <10 <sup>-3</sup>      | 0.001             | <10 <sup>-3</sup>      | 0.001             | <10 <sup>-3</sup>  |
| Multijet bkg.             | 0.023            | 0.007                  | 0.007             | 0.003                  | 0.008             | 0.001              |
| Pileup                    | 0.001            | 0.001                  | <10 <sup>-3</sup> | <10 <sup>-3</sup>      | 0.001             | <10 <sup>-3</sup>  |
| Top quark mass            | 0.012            | 0.008                  | 0.010 (*)         | 0.008 (*)              | 0.010             | 0.007              |
| t <del>t</del> scales     | 0.011            | 0.008 (*)              | 0.014             | 0.007 (*)              | 0.012             | 0.007              |
| tt match. scale           | 0.011 (*)        | 0.007 (*)              | 0.010             | 0.007                  | 0.009             | 0.007              |
| tt MC and hadronisation   | 0.015            | 0.009                  | 0.005             | 0.003                  | 0.006             | 0.004              |
| $t\bar{t} p_{T}$ reweight | 0.011            | 0.010                  | <10 <sup>-3</sup> | 0.001                  | <10 <sup>-3</sup> | 0.002              |
| Limited MC size           | 0.002            | 0.001                  | 0.002             | 0.001                  | 0.002             | 0.001              |
| PDF                       | 0.004            | 0.001                  | 0.002             | 0.001                  | 0.002             | 0.001              |
| Total                     | 0.037            | 0.020                  | 0.024             | 0.014                  | 0.023             | 0.014              |



## W helicity: CMS 8 TeV ttbar dilepton

| Systematics uncertainty                       | $\Delta F_L$ | $\Delta F_0$ |
|-----------------------------------------------|--------------|--------------|
| Lepton ID and trigger                         | < 0.001      | < 0.001      |
| b tagging                                     | 0.001        | 0.002        |
| Background normalisations                     | 0.002        | 0.005        |
| Jet energy resolution                         | 0.003        | 0.002        |
| Jet energy scale                              | 0.002        | 0.009        |
| Top <i>p</i> <sub>T</sub> reweighting         | 0.007        | 0.010        |
| Factorization/renormalization scales (signal) | 0.013        | 0.010        |
| Factorization/renormalization scales (DY)     | 0.004        | 0.007        |
| Hadronization model                           | 0.006        | 0.008        |
| Jet-parton matching                           | 0.017        | 0.012        |
| Top mass $(\pm 1 \text{GeV}/c^2)$             | 0.004        | 0.005        |
| Pileup                                        | 0.001        | < 0.001      |
| PDF                                           | < 0.001      | < 0.001      |
| Integrated luminosity                         | 0.001        | < 0.001      |
| Limited simulated signal statistics           | 0.003        | 0.004        |
| Total uncertainty                             | 0.025        | 0.024        |

|                 | Muon channel |                    | Electron channel |                         | Combination  |                    |
|-----------------|--------------|--------------------|------------------|-------------------------|--------------|--------------------|
|                 | $\Delta F_0$ | $\Delta F_{\rm L}$ | $\Delta F_0$     | $\Delta F_{\mathrm{L}}$ | $\Delta F_0$ | $\Delta F_{\rm L}$ |
| Experimental    | 0.010        | 0.009              | 0.008            | 0.005                   | 0.010        | 0.010              |
| Modeling        | 0.025        | 0.017              | 0.025            | 0.022                   | 0.025        | 0.020              |
| Normalization   | 0.002        | 0.008              | 0.012            | 0.014                   | 0.011        | 0.012              |
| SM W helicities | 0.007        | 0.004              | 0.005            | 0.003                   | 0.007        | 0.004              |
| MC sample size  | 0.026        | 0.012              | 0.025            | 0.015                   | 0.020        | 0.012              |
| tWb in prod.    | 0.014        | 0.016              | 0.010            | 0.018                   | 0.011        | 0.014              |
| Total           | 0.041        | 0.030              | 0.040            | 0.036                   | 0.037        | 0.032              |

 $F_{\rm L} = 0.298 \pm 0.028 \,(\text{stat}) \pm 0.032 \,(\text{syst}),$ 

 $F_0 = 0.720 \pm 0.039 \,(\text{stat}) \pm 0.037 \,(\text{syst}),$ 

total correlation of -0.80

 $F_{\rm R} = -0.018 \pm 0.019 \,(\text{stat}) \pm 0.011 \,(\text{syst}),$ 



-  $\cos\theta^* \sim -1$ : corresponds to events in which the charged lepton is emitted backward to the direction of motion of the W boson and thus parallel to the b-quark momentum.

The strong suppression of events after event selection can be linked to the event-selection requirements on the charged lepton candidates: isolation and the cut on its momentum.

-  $\cos\theta^* \sim +1$  corresponds to events in which the neutrino is emitted backward with respect to the direction of motion of the W boson and thus in the same direction as the b-quark. Therefore the momentum of the neutrino (and thus also the missing transverse energy) decreases and these events are more likely to fail the missing transverse energy cut. Mismeasurements on this also affect the angular distribution.



## Wtb vertex

#### The *Wtb* vertex Lagrangian:

$$SM \Rightarrow L_{Wtb}^{SM} = -\frac{g}{\sqrt{2}} \overline{u}_b \gamma^{\mu} V_{tb} P_L u_t W_{\mu}^+ + \text{h.c.}$$

A general extension:



left and right - handed vector and tensor couplings

 $\bar{\nu}$ 

W

#### Angular observables to probe the *Wtb* vertex:



22/11/16

→ For unpolarised top quark decays, the only meaningful direction in the top RF is the one of the W boson momentum (q)

Nucl.Phys. B812 (2009) 181-204

→ For polarised (spin direction  $s_t$ ) top quarks produced via electroweak interaction, further directions may be considered: N and T.

Three angular distributions: 
$$\theta_l^*(q,l)$$
,  $\theta_l^N(N,l)$  and  $\theta_l^T(T,l)$   

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l^X} = \frac{3}{8} (1 + \cos\theta_l^X)^2 \mathbf{F}_+^X + \frac{3}{8} (1 - \cos\theta_l^X)^2 \mathbf{F}_-^X + \frac{3}{4} \sin^2\theta_l^X \mathbf{F}_0^X$$

$$A_{FB}^X = \frac{N(\cos\theta_l^X > \mathbf{0}) - N(\cos\theta_l^X < \mathbf{0})}{N(\cos\theta_l^X > \mathbf{0}) + N(\cos\theta_l^X < \mathbf{0})} \propto \left(F_+^X - F_-^X\right)$$

María Moreno Llácer – W helicity

## ATLAS 8 TeV I+jets



$$\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = \frac{3}{8} \left(1 - \cos\theta^*\right)^2 F_L + \frac{3}{4} \sin^2\theta^* F_0 + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 F_R$$

$$W_{L} = \frac{\frac{3}{8}(1 - \cos\theta_{\text{geh}}^{*})^{2}}{f_{L} \cdot \frac{3}{8}(1 - \cos\theta_{\text{geh}}^{*})^{2} + f_{0} \cdot \frac{3}{4}(1 - \cos^{2}\theta_{\text{geh}}^{*}) + f_{R} \cdot \frac{3}{8}(1 + \cos\theta_{\text{geh}}^{*})^{2}}$$
$$W_{0} = \frac{\frac{3}{4}(1 - \cos^{2}\theta_{\text{geh}}^{*})}{f_{L} \cdot \frac{3}{8}(1 - \cos\theta_{\text{geh}}^{*})^{2} + f_{0} \cdot \frac{3}{4}(1 - \cos^{2}\theta_{\text{geh}}^{*}) + f_{R} \cdot \frac{3}{8}(1 + \cos\theta_{\text{geh}}^{*})^{2}}{\frac{3}{8}(1 + \cos\theta_{\text{geh}}^{*})^{2}}$$
$$W_{R} = \frac{\frac{3}{8}(1 + \cos\theta_{\text{geh}}^{*})^{2}}{f_{L} \cdot \frac{3}{8}(1 - \cos\theta_{\text{geh}}^{*})^{2} + f_{0} \cdot \frac{3}{4}(1 - \cos^{2}\theta_{\text{geh}}^{*}) + f_{R} \cdot \frac{3}{8}(1 + \cos\theta_{\text{geh}}^{*})^{2}}{\frac{3}{8}(1 - \cos^{2}\theta_{\text{geh}}^{*})^{2} + f_{0} \cdot \frac{3}{4}(1 - \cos^{2}\theta_{\text{geh}}^{*}) + f_{R} \cdot \frac{3}{8}(1 + \cos\theta_{\text{geh}}^{*})^{2}}{\frac{3}{8}(1 - \cos^{2}\theta_{\text{geh}}^{*}) + f_{R} \cdot \frac{3}{8}(1 + \cos\theta_{\text{geh}}^{*})^{2}}$$