

Improving the Top EFT Fit with Boosted Reconstruction Techniques

L. Moore¹, based on (1607.04304) with C. Englert¹, K. Nordström¹. & M. Russell¹

¹Particle Physics Theory University of Glasgow

LHC Top Working Group EFT Session

	Recup II LIII	Analysis on alogy	Results	ourning and conclusions
-				
	-			

Liam Moore

- Absence of evidence for BSM states in $t\bar{t}$ resonance searches $\implies \Lambda_{\rm NP} \gg v$: low-energy signature of New Physics in the top sector should be well-described by the SMEFT
- Leading non-resonant effects in top physics arise from dimension-six operators with unknown couplings \implies use measurements to constrain Wilson Coefficients $C_t/\Lambda_{\rm NP}^2$
- EFT operators' influence most pronounced at large momentum transfers $d\sigma_{
 m D6}\propto rac{p_T^2}{\Lambda_{
 m NP}^2} \Longrightarrow$ high top $p_T\iff$ NP enhanced
- Extracting information from sensitive region of phase space requires $t\bar{t}$ reconstruction at 13 TeV (and beyond)

- Absence of evidence for BSM states in $t\bar{t}$ resonance searches $\implies \Lambda_{\rm NP} \gg v$: low-energy signature of New Physics in the top sector should be well-described by the SMEFT
- Leading non-resonant effects in top physics arise from dimension-six operators with unknown couplings \implies use measurements to constrain Wilson Coefficients $C_i/\Lambda_{\rm NP}^2$
- EFT operators' influence most pronounced at large momentum transfers $d\sigma_{
 m D6}\propto rac{p_T^2}{\Lambda_{
 m NP}^2} \Longrightarrow$ high top $p_T\iff$ NP enhanced
- Extracting information from sensitive region of phase space requires $t\bar{t}$ reconstruction at 13 TeV (and beyond)

- Absence of evidence for BSM states in $t\bar{t}$ resonance searches $\implies \Lambda_{\rm NP} \gg v$: low-energy signature of New Physics in the top sector should be well-described by the SMEFT
- Leading non-resonant effects in top physics arise from dimension-six operators with unknown couplings \implies use measurements to constrain Wilson Coefficients $C_i/\Lambda_{\rm NP}^2$
- EFT operators' influence most pronounced at large momentum transfers $d\sigma_{\rm D6} \propto rac{p_T^2}{\Lambda_{
 m NP}^2} \Longrightarrow$ high top $p_T \iff$ NP enhanced
- Extracting information from sensitive region of phase space requires $t\bar{t}$ reconstruction at 13 TeV (and beyond)

- Absence of evidence for BSM states in $t\bar{t}$ resonance searches $\implies \Lambda_{\rm NP} \gg v$: low-energy signature of New Physics in the top sector should be well-described by the SMEFT
- Leading non-resonant effects in top physics arise from dimension-six operators with unknown couplings \implies use measurements to constrain Wilson Coefficients $C_i/\Lambda_{\rm NP}^2$
- EFT operators' influence most pronounced at large momentum transfers $d\sigma_{\rm D6}\propto rac{p_T^2}{\Lambda_{
 m NP}^2} \Longrightarrow$ high top $p_T\iff$ NP enhanced
- Extracting information from sensitive region of phase space requires *t*t reconstruction at 13 TeV (and beyond)

Objective:

Quantify scope for strengthening current constraints by applying jet substructure algorithms to efficiently reconstruct boosted tops.

$$\mathcal{L}_{\text{BSM}}(\{\Phi_{\text{SM}}\}, \{\mathcal{X}_{\text{NP}}\}) \rightarrow \mathcal{L}_{SM}(\{\Phi_{\text{SM}}\}) + \frac{C_i}{\Lambda^2} \mathcal{O}_i(\{\Phi_{\text{SM}}\}) + \dots$$

$$\text{UV Completion} \rightarrow \text{Standard Model} + \text{Dimension Six Operators}$$

- In the regime $q^2 < m_{\chi}^2$, heavy states interacting with SM degrees of freedom decouple, generating a set of local operators O_i .
- The short-distance structure of the theory determines the values of the effective coupling constants $\frac{C_i}{\Lambda^2} = \frac{f(g_{\mathcal{X}})}{m_{\mathcal{X}}^2}$
- Gauge invariance + *B*-conservation identifies 59 independent operators O_i at dimension-six (Grzadkowski et al. 1008.4884)
- The leading modifications to observables arise from the interference of SM matrix elements with those mediated by \mathcal{O}_i ; $d\sigma_{\text{D6}} \propto \frac{C_i}{\Lambda^2} \int d\Pi \ \Re(\mathcal{M}^*_{\text{SM}}\mathcal{M}_{\text{D6}}) + \mathcal{O}(\Lambda^{-4}) = \frac{q^2}{\Lambda^2} \times (\ldots)$

$t\bar{t}$ Production in the SMEFT

Coefficient C_i	Operator \mathcal{O}_i	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
C _G	$f_{ABC}G^{A u}_{\mu}G^{B\lambda}_{ u}G^{C\mu}_{\lambda}$	G G G
C_{uG}^{33}	$(ar{q}\sigma^{\mu u}T^Au) ilde{arphi}G^A_{\mu u}$	<i>t</i>
$C_{qq}^{(1)}$	$(ar q \gamma_\mu q) (ar q \gamma^\mu q)$	General to the
$C_{qq}^{(3)}$	$(ar q \gamma_\mu au^I q) (ar q \gamma^\mu au^I q)$	90°G G united t united
C _{uu}	$(ar{u}\gamma_{\mu}u)(ar{u}\gamma^{\mu}u)$	
$C_{qu}^{(8)}$	$(ar q \gamma_\mu T^A q) (ar u \gamma^\mu T^A u)$	George de George d' d, u unu
$C_{qd}^{(8)}$	$(ar q \gamma_\mu T^A q) (ar d \gamma^\mu T^A d)$	surger and a surger H t d, u G t
$C_{ud}^{(8)}$	$(ar{u}\gamma_\mu T^A u)(ar{d}\gamma^\mu T^A d)$	

Table : D6 operators in $t\bar{t}$ production. ψ^4 operators interfere in four linear combinations $C_{u,d}^{1,2}$.

Liam Moore

Glasaow University

Improving the Top EFT Fit with Boosted Reconstruction Techniques

5/33

$t\overline{t}$ Production in the SMEFT

Coefficient C_i	Operator \mathcal{O}_i
C_{G}	$f_{ABC}G^{A u}_{\mu}G^{B\lambda}_{ u}G^{C\mu}_{\lambda}$
C_{uG}^{33}	$(ar{q}\sigma^{\mu u}T^Au) ilde{arphi}G^A_{\mu u}$
$C_{qq}^{(1)}$	$(ar q \gamma_\mu q) (ar q \gamma^\mu q)$
$C_{qq}^{(3)}$	$(ar q \gamma_\mu au^I q) (ar q \gamma^\mu au^I q)$
C _{uu}	$(ar{u}\gamma_{\mu}u)(ar{u}\gamma^{\mu}u)$
$C_{qu}^{(8)}$	$(ar q \gamma_\mu T^A q) (ar u \gamma^\mu T^A u)$
$C_{qd}^{(8)}$	$(ar q \gamma_\mu T^A q) (ar d \gamma^\mu T^A d)$
$C_{ud}^{(8)}$	$(ar{u}\gamma_\mu T^A u)(ar{d}\gamma^\mu T^A d)$

Table : Leading D6 operators in $t\bar{t}$ production and some possible UV origins.

Broad coverage of candidate UV-complete models:

- Heavy coloured fermions, technihadrons, gluon substructure . . . (Cho et al. 9307345)
- Composite top scenarios (Englert et al. 1401.1502)
- W' & Z's (Buckley et al. 1512.03360)
- Heavy axigluons (Cvetic et al. 1209.2741)

Glasaow University

Liam Moore

-

An (Abridged) Brief History of *t*-EFT

- SMEFT *tī* phenomenology initially explored in e.g. (Zhang et al. 1008.3869, Degrande et al. 1010.6304) and more . . .
- Steadily accumulating, limited NLO SMEFT predictions in top physics, in e.g. t-decay (Zhang 1404.1264), tt (Franzosi et al. 1503.08841), single top (Zhang 1601.06163), ttV ((Bylund et al. 1601.08193)), ttH (Maltoni et al. 1607.05330)...
- Global C_i constraints available; PEWM operators (Zhang et al. 1201.6670) & (de Blas et al. 1507.00757), FCNC operators (Durieux et al. 1412.7166), $t\bar{t}$ + single top & more (Buckley et al. 1506.08845, 1512.03360) . . .
- Boosted $t\bar{t}$ investigations; A_C @ high $\beta_{t\bar{t}}$ (Aguilar-Saavedra et al. 1109.3710), \mathcal{O}_{uG}^{33} @ high $m_{t\bar{t}}$ (Aguilar-Saavedra et al. 1412.6654v2), composite top operators (HEPTOPTAGGER) (Englert et al. 1401.1502v1)...

TOPFITTER Constraints on $t\overline{t}$ Operators

- Fit MC to parton-level unfolded inclusive + differential top measurements
- Current global limits on C_i/Λ^2 extracted predominantly from Run I datasets utilizing resolved analyses
- Weak limits on C_i/Λ^2 inherently limit utility of EFT expansion: NP decoupled $\implies \Lambda > m_{t\bar{t}}^{\max}$
- Strengthening constraints
 ⇒ extend range of validity of EFT

Figure : (TopFitter 95% CL (Buckley et al. 1512.03360))

Liam Moore

Improving Constraints in $t\overline{t}$ Production

- Capitalizing on higher $\mathcal{L} & \sqrt{s}$ in Run II (and beyond) will require extracting information from boosted tops
- NP-sensitive phase space region subject to larger uncertainties; lower statistics, larger theory uncertainty. . .
- Top reconstruction at high p_T qualitatively different - jet substructure techniques necessary

Figure : (TopFitter 95% CL (Buckley et al. 1512.03360))

Improving Constraints in $t\overline{t}$ Production

- Capitalizing on higher $\mathcal{L} \otimes \sqrt{s}$ in Run II (and beyond) will require extracting information from boosted tops
- NP-sensitive phase space region subject to larger uncertainties; lower statistics, larger theory uncertainty...
- Top reconstruction at high p_T qualitatively different - jet substructure techniques necessary

Figure : p_T^t spectrum @ 30 fb⁻¹, $C_u^1 = C_u^2 = C_d^1 = C_d^2 = 10 \text{ TeV}^{-2}$

Improving Constraints in $t\overline{t}$ Production

- Capitalizing on higher $\mathcal{L} \& \sqrt{s}$ in Run II (and beyond) will require extracting information from boosted tops
- NP-sensitive phase space region subject to larger uncertainties; lower statistics, larger theory uncertainty. . .
- Top reconstruction at high p_T qualitatively different - jet substructure techniques necessary

Figure : p_T^t spectrum @ 30 fb⁻¹, $C_u^1 = C_u^2 = C_d^1 = C_d^2 = 10 \text{ TeV}^{-2}$

Figure : Resolved & Boosted topologies. Credit: (CMS @ Universität Hamburg)

$$\begin{split} d_{j_1j_2} = \frac{\Delta R_{j_1j_2}^2}{R_{\text{jet}}^2} \min(p_{Tj_1}^{2n}, p_{Tj_2}^{2n}) \,, \quad n = \{1 \, (k_T), 0 \, \text{(C/A)}, -1 \, \text{(anti-}k_T)\}. \\ \Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2} \end{split}$$

- $\Delta R_{bjj} > R_{jet}$
- Isolated jets \leftrightarrow hard partons
- Individually characterized by QCD → reconstruct traditional jets

- $\Delta R_{bjj} \sim R_{
 m jet}$
- Merged `fat' jets
- Individually QCD + massive decays → boosted top-tagging

Figure : Resolved & Boosted topologies. Credit: (CMS @ Universität Hamburg)

- Boosted and resolved tops \leftrightarrow distinct systematic uncertainties. $\sigma_{p_T^t>200 {\rm GeV}}^{t\bar{t}}/\sigma_{
 m tot}^{t\bar{t}}\sim 10\%$ @ 13 TeV data-starved @ high p_T
- How does the relative weight of high p_T tops in constraining C_l/Λ^2 change with increasing \mathcal{L}_{int} over the lifetime of the LHC, and as a function of experimental systematics and theory uncertainties?

Figure : Resolved & Boosted topologies. Credit: (CMS @ Universität Hamburg)

- Boosted and resolved tops \leftrightarrow distinct systematic uncertainties. $\sigma_{p_T^t>200{\rm GeV}}^{t\bar{t}}/\sigma_{\rm tot}^{t\bar{t}}\sim 10\%$ @ 13 TeV - data-starved @ high p_T
- How does the relative weight of high p_T tops in constraining C_i/Λ^2 change with increasing \mathcal{L}_{int} over the lifetime of the LHC, and as a function of experimental systematics and theory uncertainties?

Figure : Resolved & Boosted topologies. Credit: (CMS @ Universität Hamburg)

- Boosted and resolved tops \leftrightarrow distinct systematic uncertainties. $\sigma_{p_T^t>200 {\rm GeV}}^{t\bar{t}}/\sigma_{
 m tot}^{t\bar{t}}\sim 10\%$ @ 13 TeV data-starved @ high p_T
- How does the relative weight of high p_T tops in constraining C_i/Λ^2 change with increasing \mathcal{L}_{int} over the lifetime of the LHC, and as a function of experimental systematics and theory uncertainties?

Can investigate interplay of these factors by partitioning phase space by p_T^t and performing complementary resolved and boosted analyses on representative hadron-level pseudodata samples

Setup - Theory Samples (I)

- We implemented the `Warsaw' Basis (Grzadkowski et al. 1008.4884) in FeynRuLes (Alloul et al. 1310.1921), interfaced via UFO (Degrande et al. 1108.2040) to MG5_AMC (Alwall et al. 1405.0301) → parton-level tt events @ LO in SMEFT
- Reweight distributions to NLO QCD binwise with SM K-factors, obtained from MCFM (Campbell et al. 1007.3492) & cross-checked with with MC@NLO (Alwall et al. 1405.0301)
- Theory uncertainties: scales varied independently between $m_t/2 < \mu_{R,F} < 2m_t$. PDF uncertainties estimated by generating samples with CT14 (Dulat et al. 1506.07443), MMHT14 (Harland-Lang et al. 1412.3989) and NNPDF3.0 (Ball et al. 1410.8849) PDFs as per PDF4LHC WG recommendations for Run II (Butterworth et al. 1510.03865). Full scale + PDF envelope defines theory band. Treated as uncorrelated with $\epsilon_{\rm syst}^{\rm exp}$ & fixed with \mathcal{L} .

Setup - Theory Samples (I)

- We implemented the `Warsaw' Basis (Grzadkowski et al. 1008.4884) in FeynRuLes (Alloul et al. 1310.1921), interfaced via UFO (Degrande et al. 1108.2040) to MG5_AMC (Alwall et al. 1405.0301) → parton-level tt events @ LO in SMEFT
- Reweight distributions to NLO QCD binwise with SM K-factors, obtained from MCFM (Campbell et al. 1007.3492) & cross-checked with with MC@NLO (Alwall et al. 1405.0301)
- Theory uncertainties: scales varied independently between $m_t/2 < \mu_{R,F} < 2m_t$. PDF uncertainties estimated by generating samples with CT14 (Dulat et al. 1506.07443), MMHT14 (Harland-Lang et al. 1412.3989) and NNPDF3.0 (Ball et al. 1410.8849) PDFs as per PDF4LHC WG recommendations for Run II (Butterworth et al. 1510.03865). Full scale + PDF envelope defines theory band. Treated as uncorrelated with $\epsilon_{\rm syst}^{\rm exp}$ & fixed with \mathcal{L} .

Setup - Theory Samples (I)

- We implemented the 'Warsaw' Basis (Grzadkowski et al. 1008.4884) in FEYNRULES (Alloul et al. 1310.1921), interfaced via UFO (Degrande et al. 1108.2040) to MG5_AMC (Alwall et al. 1405.0301) → parton-level tt events @ LO in SMEFT
- Reweight distributions to NLO QCD binwise with SM K-factors, obtained from MCFM (Campbell et al. 1007.3492) & cross-checked with with MC@NLO (Alwall et al. 1405.0301)
- Theory uncertainties: scales varied independently between $m_t/2 < \mu_{R,F} < 2m_t$. PDF uncertainties estimated by generating samples with CT14 (Dulat et al. 1506.07443), MMHT14 (Harland-Lang et al. 1412.3989) and NNPDF3.0 (Ball et al. 1410.8849) PDFs as per PDF4LHC WG recommendations for Run II (Butterworth et al. 1510.03865). Full scale + PDF envelope defines theory band. Treated as uncorrelated with $\epsilon_{\rm syst}^{\rm exp}$ & fixed with \mathcal{L} .

Setup - SMEFT Theory Samples (II)

- Construct a logarithmically random-sampled parameter space for C_i/Λ^2 centred about $\{C_i\} = 0$, and generate theory predictions and uncertainties as described at each point
- Fit an interpolation-based parameterizing function to supply predictions for arbitrary values of $\{C_i\}$ for each bin

Setup - SMEFT Theory Samples (II)

- Construct a logarithmically random-sampled parameter space for C_i/Λ^2 centred about $\{C_i\} = 0$, and generate theory predictions and uncertainties as described at each point
- Fit an interpolation-based parameterizing function to supply predictions for arbitrary values of $\{C_i\}$ for each bin

This takes the form of a fourth order polynomial in the coefficients $\{C_i\}$ for each bin b:

$$f_b(\lbrace C_i\rbrace) = \alpha_0^b + \sum_i \beta_i^b C_i + \sum_{i \le j} \gamma_{i,j}^b C_{i,j} + \dots$$

Once f_b is constructed, all that remains is to define a χ^2 goodness of fit function between theory and (pseudo-)data, and minimise it to obtain exclusion contours for $\{C_i\}$.

- Simulate hadron-level $t\bar{t}$ events in the semileptonic decay channel by showering $\{C_i\} = 0$ point in HERWIG++ (Bahr et al. 0803.0883, Bell et al. 1512.01178)
- Extract event samples corresponding to representative LHC integrated luminosity scenarios $\mathcal{L}_{int} = \{30 \text{fb}^{-1}, 300 \text{fb}^{-1}, 3ab^{-1}\}$
- $p_T^t \ge 200$ GeV chosen as threshold above which an event qualifies for boosted reconstruction (based on top-tagging efficiency (**Plehn et al. 1112.4441**))
- Resolved and boosted analyses for each p_T^t region implemented in River (Buckley et al. 1003.0694)

- Simulate hadron-level $t\overline{t}$ events in the semileptonic decay channel by showering $\{C_i\} = 0$ point in HERWIG++ (Bahr et al. 0803.0883, Bell et al. 1512.01178)
- Extract event samples corresponding to representative LHC integrated luminosity scenarios $\mathcal{L}_{int} = \{30 \text{fb}^{-1}, 300 \text{fb}^{-1}, 3ab^{-1}\}$
- $p_T^t \ge 200$ GeV chosen as threshold above which an event qualifies for boosted reconstruction (based on top-tagging efficiency (**Plehn et al. 1112.4441**))
- Resolved and boosted analyses for each p_T^t region implemented in River (Buckley et al. 1003.0694)

- Simulate hadron-level $t\overline{t}$ events in the semileptonic decay channel by showering $\{C_i\} = 0$ point in HERWIG++ (Bahr et al. 0803.0883, Bell et al. 1512.01178)
- Extract event samples corresponding to representative LHC integrated luminosity scenarios $\mathcal{L}_{int} = \{30 \text{fb}^{-1}, 300 \text{fb}^{-1}, 3ab^{-1}\}$
- $p_T^t \ge 200 \text{GeV}$ chosen as threshold above which an event qualifies for boosted reconstruction (based on top-tagging efficiency (Plehn et al. 1112.4441))
- Resolved and boosted analyses for each p_T^t region implemented in River (Buckley et al. 1003.0694)

- Simulate hadron-level $t\bar{t}$ events in the semileptonic decay channel by showering $\{C_i\} = 0$ point in HERWIG++ (Bahr et al. 0803.0883, Bell et al. 1512.01178)
- Extract event samples corresponding to representative LHC integrated luminosity scenarios $\mathcal{L}_{int} = \{30 \text{fb}^{-1}, 300 \text{fb}^{-1}, 3ab^{-1}\}$
- $p_T^t \ge 200 \text{GeV}$ chosen as threshold above which an event qualifies for boosted reconstruction (based on top-tagging efficiency (Plehn et al. 1112.4441))
- Resolved and boosted analyses for each p_T^t region implemented in River (Buckley et al. 1003.0694)

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions		
Analysis Strategy						

- We require a single charged lepton with $p_T > 30$ GeV, and missing transverse energy vector with magnitude $E_T^{miss} > 30$ GeV. The leptonic W-boson is reconstructed from these by assuming it was produced on-shell. We do not consider the τ decay mode
 - Jets are then clustered using the anti- k_T algorithm (Cacciari et al. 0802.1189) using FASTJET (Cacciari et al. 1111.6097) in two separate groups with R = (0.4, 1.2) requiring $p_T > (30, 200)$ GeV respectively, and jets which overlap with the charged lepton are removed.
 - The R = 1.2 fat jets are required to be within $|\eta| < 2$, and the R = 0.4 small jets are b-tagged within the same η range with an efficiency of 70% and fake rate of 1%

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions		
Analysis Strategy						

- We require a single charged lepton with $p_T > 30$ GeV, and missing transverse energy vector with magnitude $E_T^{\text{miss}} > 30$ GeV. The leptonic W-boson is reconstructed from these by assuming it was produced on-shell. We do not consider the τ decay mode
- Jets are then clustered using the anti- k_T algorithm (Cacciari et al. 0802.1189) using FASTJET (Cacciari et al. 1111.6097) in two separate groups with R = (0.4, 1.2) requiring $p_T > (30, 200)$ GeV respectively, and jets which overlap with the charged lepton are removed.
- The R = 1.2 fat jets are required to be within $|\eta| < 2$, and the R = 0.4 small jets are b-tagged within the same η range with an efficiency of 70% and fake rate of 1%

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions		
Analysis Strategy						

- We require a single charged lepton with $p_T > 30$ GeV, and missing transverse energy vector with magnitude $E_T^{\text{miss}} > 30$ GeV. The leptonic W-boson is reconstructed from these by assuming it was produced on-shell. We do not consider the τ decay mode
- Jets are then clustered using the anti- k_T algorithm (Cacciari et al. 0802.1189) using FASTJET (Cacciari et al. 1111.6097) in two separate groups with R = (0.4, 1.2) requiring $p_T > (30, 200)$ GeV respectively, and jets which overlap with the charged lepton are removed.
- The R = 1.2 fat jets are required to be within $|\eta| < 2$, and the R = 0.4 small jets are b-tagged within the same η range with an efficiency of 70% and fake rate of 1%

If $n_{\text{fat}} \ge 1$ and $n_{\text{b-tagged}} \ge 1 \implies \text{boosted top-tag}$ of the leading fat jet using HEPTOPTAGER (Plehn et al. 1006.2833, Kasieczka et al. 1503.05921) and reconstruct t_{lept} using the leading, non-overlapping b-tagged small jet and the reconstructed leptonic W.

Improving the Top EFT Fit with Boosted Reconstruction Techniques 16/33

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions	
Analysis	Strateav - Resolved				

- If no satisfactory fat jet exists \implies require $n_{ t b ext{-tagged}} \geq 2$ and $n_{ t light} \geq 2$
- Reconstruct hadronic *W*-boson by finding the light small jet pair that best reconstructs the *W* mass

 Reconstruct top candidates by similarly finding the pairs of reconstructed W-boson and b-tagged small jet that best reconstruct the top mass

- If no satisfactory fat jet exists \implies require $n_{ ext{b-tagged}} \geq 2$ and $n_{ ext{light}} \geq 2$
- Reconstruct hadronic *W*-boson by finding the light small jet pair that best reconstructs the *W* mass

 Reconstruct top candidates by similarly finding the pairs of reconstructed W-boson and b-tagged small jet that best reconstruct the top mass

- If no satisfactory fat jet exists \implies require $n_{ ext{b-tagged}} \geq 2$ and $n_{ ext{light}} \geq 2$
- Reconstruct hadronic *W*-boson by finding the light small jet pair that best reconstructs the *W* mass
- Reconstruct top candidates by similarly finding the pairs of reconstructed W-boson and b-tagged small jet that best reconstruct the top mass

Finally, regardless of the approach used, we require both top candidates to have $\left| m_{\rm cand} - m_{\rm top} \right| < 40 {\rm GeV}$. If this requirement is fulfilled the event passes the analysis.

Leptons	$p_T > 30 { m GeV}$
	$ \eta < 4.2$
Missing energy	$E_T^{miss} > 30GeV$
Small jets	anti- $k_TR=0.4$
	$p_T > 30 \ { m GeV}$, $ \eta < 2$
Fat jets	anti- $k_TR=1.2$
	$p_T > 200~{ m GeV}$, $ \eta < 2$
Resolved	\geq 4 jets w/ \geq 2 b-tags
Boosted	\geq 1 fat jet, \geq 1 w/ b-tag

Table : Summary of River event selection criteria

- We chose the benchmark scenarios $\mathcal{L}_{\text{int}}{=}\{30,300,3000\} \text{ fb}^{-1}$ with $\varepsilon_{\text{syst}}=\{10\%,20\%\}$
- Systematics inserted by defining a flat percentage interval associated with each bin
- Bounds presented here are `one-at-a-time', i.e. not marginalised over the full operator set.

Liam Moore

Leptons	$p_T > 30 \ { m GeV}$
	$ \eta < 4.2$
Missing energy	$E_T^{ m miss} > 30~{ m GeV}$
Small jets	anti- $k_TR=0.4$
	$p_T > 30 \ { m GeV}$, $ \eta < 2$
Fat jets	anti- $k_TR=1.2$
	$p_T > 200~{ extsf{GeV}}$, $ \eta < 2$
Resolved	\geq 4 jets w/ \geq 2 b-tags
Boosted	\geq 1 fat jet, \geq 1 w/ b-tag

Table : Summary of River event selection criteria

- We chose the benchmark scenarios $\mathcal{L}_{\text{int}}{=}\{30,300,3000\} \text{ fb}^{-1}$ with $\varepsilon_{\text{syst}}=\{10\%,20\%\}$
- Systematics inserted by defining a flat percentage interval associated with each bin
- Bounds presented here are `one-at-a-time', i.e. not marginalised over the full operator set.

Liam Moore

< 2

Leptons	$p_T > 30{ m GeV}$
	$ \eta < 4.2$
Missing energy	$E_T^{ m miss} > 30~{ m GeV}$
Small jets	anti- $k_T R = 0.4$
	$p_T > 30 \ { m GeV}$, $ \eta < 2$
Fat jets	anti- $k_TR=1.2$
	$p_T > 200~{ ext{GeV}}$, $ \eta < 2$
Resolved	\geq 4 jets w/ \geq 2 b-tags
Boosted	\geq 1 fat jet, \geq 1 w/ b-tag

Table : Summary of RIVET event selection criteria

- We chose the benchmark scenarios $\mathcal{L}_{int} = \{30, 300, 3000\} \, \text{fb}^{-1}$ with $\varepsilon_{syst} = \{10\%, 20\%\}$
- Systematics inserted by defining a flat percentage interval associated with each bin
- Bounds presented here are `one-at-a-time', i.e. not marginalised over the full operator set.

$95\%~C.L. @~\mathcal{L}_{ ext{int}} = ~30~ ext{fb}^{-1},~\epsilon_{ ext{syst}} = 20\%$

Figure : 1-dimensional 95% confidence intervals on C_i/Λ^2 for both selections using $\mathcal{L} = 30 \text{ fb}^{-1}$ and $\varepsilon_{\text{syst}} = 20\%$, displayed together with TopFitter constraints from unfolded 8 TeV p_T^t distributions.

Figure : Fractional improvement on the 95% C.I., with each choice of ϵ_{syst} and \mathcal{L}_{int} , normalized to $\epsilon_{syst} = 20\%$ and $\mathcal{L}_{int} = 30 \text{fb}^{-1}$. { $30 \text{fb}^{-1}, 300 \text{fb}^{-1}, 3ab^{-1}$ } of data at at 20% systematics. { $30 \text{fb}^{-1}, 300 \text{fb}^{-1}, 3ab^{-1}$ } of data for 10% systematics.

- We find that the limits on the coefficient C_G can be improved by 40% by going from 30 fb⁻¹ to 300 fb⁻¹, and by a further 20% at 3 ab⁻¹.
- Systematics have a more modest effect: at 3 ab⁻¹ limits marginally improved by 10% reduction. Improvements in the threshold region require collecting enough data to overcome the lack of sensitivity.

Resolved - Relative Improvements w/ \mathcal{L}_{int} and ϵ_{syst}

- We find that the limits on the coefficient C_G can be improved by 40% by going from 30 fb $^{-1}$ to 300 fb $^{-1}$, and by a further 20% at 3 ab^{-1} .
- Systematics have a more modest effect: at 3 ab^{-1} limits marginally improved by 10% reduction. Improvements in the threshold region require collecting enough data to overcome the lack of sensitivity.

For the chromomagnetic dipole operator Q_{uG}^{33} , improving the experimental systematics plays much more of role. A 10% improvement in systematics, coupled with an increase in statistics from 30 fb⁻¹ to 300 fb⁻¹ leads to stronger limits that maintaining current systematics and collecting a full 3 ab⁻¹ of data.

- Similar conclusions apply for the four-quark operators, to varying degrees, i.e. reducing systematic uncertainties can provide comparable improvements to collecting much larger data samples
- The Wilson coefficients C_1^u and C_2^u contributing to the $u\bar{u}$ channel benefit more from reduced systematic uncertainties than their $d\bar{d}$ counterparts

10% systematics. **10%**

Liam Moore

- Similar conclusions apply for the four-quark operators, to varying degrees, i.e. reducing systematic uncertainties can provide comparable improvements to collecting much larger data samples
- The Wilson coefficients C_1^u and C_2^u contributing to the $u\bar{u}$ channel benefit more from reduced systematic uncertainties than their $d\bar{d}$ counterparts

Liam Moore

Boosted - Relative Improvements w/ $\mathcal{L}_{\mathsf{int}}$ and ϵ_{syst}

- In the boosted selection, improving systematics by 10% has virtually no effect on the improvement in the limits statistics dominated @ 30 fb⁻¹
- For C_G, at 300 fb⁻¹ some improvement can be made if systematics are reduced, beyond which systematics saturate the sensitivity to C_G, i.e. there is no improvement to be made by collecting more data.

- In the boosted selection, improving systematics by 10% has virtually no effect on the improvement in the limits statistics dominated @ 30 fb⁻¹
- For C_G, at 300 fb⁻¹ some improvement can be made if systematics are reduced, beyond which systematics saturate the sensitivity to C_G, i.e. there is no improvement to be made by collecting more data.

Liam Moore

- For C³³_{LtG}, a modest improvement can also be made both by reducing systematics by 10% and by increasing the dataset to 300 fb⁻¹. However, going beyond this, the improvement is minute.
- The four-quark operators again follow this trend, although C_u^1 and C_u^2 show much more of an improvement when going from 300 fb⁻¹ to 3 ab⁻¹.

Liam Moore

Boosted - Relative Improvements w/ $\mathcal{L}_{\mathsf{int}}$ and ϵ_{syst}

- For C³³_{LLG}, a modest improvement can also be made both by reducing systematics by 10% and by increasing the dataset to 300 fb⁻¹. However, going beyond this, the improvement is minute.
- The four-quark operators again follow this trend, although C_u^1 and C_u^2 show much more of an improvement when going from 300 fb⁻¹ to 3 ab⁻¹.

- The scale and PDF variation procedure outlined typically leads to uncertainties in the 10-15% range.
- Recently, differential *K*-factors for top pair production at NNLO QCD have become available, which have substantially reduced the scale uncertainties **(Czakon et al. 1601.05375, 1511.00549)**. These are presently limited to the range $p_T^t < 400$ GeV, applicable to the TeVatron and 8 TeV LHC
- NLO + RGE effects in EFT important for measurements at LEP-level precision (Berthier et al. 1508.05060). At LHC, we find them to be numerically insignificant compared to the sources of uncertainty studied here.
- Not accounted for here is possibility of significant contribution from interfering dimension-8 operators

- The scale and PDF variation procedure outlined typically leads to uncertainties in the 10-15% range.
- Recently, differential *K*-factors for top pair production at NNLO QCD have become available, which have substantially reduced the scale uncertainties (Czakon et al. 1601.05375, 1511.00549). These are presently limited to the range $p_T^t < 400$ GeV, applicable to the TeVatron and 8 TeV LHC
- NLO + RGE effects in EFT important for measurements at LEP-level precision (Berthier et al. 1508.05060). At LHC, we find them to be numerically insignificant compared to the sources of uncertainty studied here.
- Not accounted for here is possibility of significant contribution from interfering dimension-8 operators

- The scale and PDF variation procedure outlined typically leads to uncertainties in the 10-15% range.
- Recently, differential *K*-factors for top pair production at NNLO QCD have become available, which have substantially reduced the scale uncertainties (Czakon et al. 1601.05375, 1511.00549). These are presently limited to the range $p_T^t < 400$ GeV, applicable to the TeVatron and 8 TeV LHC
- NLO + RGE effects in EFT important for measurements at LEP-level precision (Berthier et al. 1508.05060). At LHC, we find them to be numerically insignificant compared to the sources of uncertainty studied here.
- Not accounted for here is possibility of significant contribution from interfering dimension-8 operators

- The scale and PDF variation procedure outlined typically leads to uncertainties in the 10-15% range.
- Recently, differential *K*-factors for top pair production at NNLO QCD have become available, which have substantially reduced the scale uncertainties (Czakon et al. 1601.05375, 1511.00549). These are presently limited to the range $p_T^t < 400$ GeV, applicable to the TeVatron and 8 TeV LHC
- NLO + RGE effects in EFT important for measurements at LEP-level precision (Berthier et al. 1508.05060). At LHC, we find them to be numerically insignificant compared to the sources of uncertainty studied here.
- Not accounted for here is possibility of significant contribution from interfering dimension-8 operators

The Role of Theory Uncertainties (II)

Can get a feel for improvements given similar precision @ 13 TeV;

Figure : Left: 68%, 95% and 99% C.I. for $C_G \& C_{uG}^{33}$, Lines: ($\epsilon_{syst} = 20\%$, $\mathcal{L}_{int} = 30 \text{ fb}^{-1}$) with NLO theoretical uncertainties. Filled contours: likewise, with no theoretical uncertainties. Right: Likewise, w/ ($\epsilon_{syst} = 10\%$, $\mathcal{L}_{int} = 3 \text{ ab}^{-1}$).

Glasaow University

Liam Moore

- Strength of constraints
 range of EFT
 validity
- Match $rac{C_i}{\Lambda^2}=rac{g_*^2}{M_*^2}$
- Impose $M_* > m_{t\bar{t}}^{
 m max} = 2 {
 m TeV}$
- Weak constraint \implies larger g_* , higher-order corrections to BSM important
- Truncation at e.g. $\mathcal{O}(\Lambda^{-2})$ less reliable

- Strength of constraints
 range of EFT
 validity
- Match $rac{C_i}{\Lambda^2} = rac{g_*^2}{M_*^2}$
- Impose $M_* > m_{tar{t}}^{ ext{max}} = 2 ext{TeV}$
- Weak constraint \implies larger g_* , higher-order corrections to BSM important
- Truncation at e.g. $\mathcal{O}(\Lambda^{-2})$ less reliable

- Strength of constraints
 range of EFT
 validity
- Match $rac{C_i}{\Lambda^2} = rac{g_*^2}{M_*^2}$
- Impose $M_* > m_{tar{t}}^{ ext{max}} = 2 ext{TeV}$
- Weak constraint \implies larger g_* , higher-order corrections to BSM important
- Truncation at e.g. $\mathcal{O}(\Lambda^{-2})$ less reliable

- Strength of constraints
 range of EFT
 validity
- Match $rac{C_i}{\Lambda^2} = rac{g_*^2}{M_*^2}$
- Impose $M_* > m_{tar{t}}^{ extsf{max}} = 2 extsf{TeV}$
- Weak constraint \implies larger g_* , higher-order corrections to BSM important
- Truncation at e.g. $\mathcal{O}(\Lambda^{-2})$ less reliable

- Strength of constraints
 range of EFT
 validity
- Match $rac{C_i}{\Lambda^2} = rac{g_*^2}{M_*^2}$
- Impose $M_*>m_{tar t}^{ extsf{max}}=2$ TeV
- Weak constraint \implies larger g_* , higher-order corrections to BSM important
- Truncation at e.g. $\mathcal{O}(\Lambda^{-2})$ less reliable

- Large $\bar{C}_i \gtrsim 0.5 \implies$ small area constrained, large g_* likely to invalidate tree-level matching condition
- At 3 ab⁻¹, projected constraints typically $\bar{C}_i \lesssim 0.01 \implies$ even for moderate values of g_* , constraints indirectly probe mass scales much higher than the kinematic reach of the LHC

- Large $\bar{C}_i \gtrsim 0.5 \implies$ small area constrained, large g_* likely to invalidate tree-level matching condition
- At 3 ab^{-1} , projected constraints typically $\bar{C}_i \lesssim 0.01 \implies$ even for moderate values of g_* , constraints indirectly probe mass scales much higher than the kinematic reach of the LHC

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions
Summary				

- A question that remains after the first results from LHC Run I is how far EFT constraints will improve with higher statistics and larger kinematic coverage
- For representative experimental scenarios we performed a dedicated analysis for events with transverse momenta $p_T^t \ge 200 \text{ GeV}$ where top-tagging becomes relevant
- We investigated the relative improvements to constraints on the leading dimension-six operators in top pair production
- Despite the efficient top reconstruction offered by jet substructure algorithms in the sensitive region of phase space, combined limits from boosted and resolved events offer overall only marginal improvements

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions
Summary				

- A question that remains after the first results from LHC Run I is how far EFT constraints will improve with higher statistics and larger kinematic coverage
- For representative experimental scenarios we performed a dedicated analysis for events with transverse momenta $p_T^t \ge 200 \text{ GeV}$ where top-tagging becomes relevant
- We investigated the relative improvements to constraints on the leading dimension-six operators in top pair production
- Despite the efficient top reconstruction offered by jet substructure algorithms in the sensitive region of phase space, combined limits from boosted and resolved events offer overall only marginal improvements

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions
Summary				

- A question that remains after the first results from LHC Run I is how far EFT constraints will improve with higher statistics and larger kinematic coverage
- For representative experimental scenarios we performed a dedicated analysis for events with transverse momenta $p_T^t \ge 200 \text{ GeV}$ where top-tagging becomes relevant
- We investigated the relative improvements to constraints on the leading dimension-six operators in top pair production
- Despite the efficient top reconstruction offered by jet substructure algorithms in the sensitive region of phase space, combined limits from boosted and resolved events offer overall only marginal improvements

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions
Summary				

- A question that remains after the first results from LHC Run I is how far EFT constraints will improve with higher statistics and larger kinematic coverage
- For representative experimental scenarios we performed a dedicated analysis for events with transverse momenta $p_T^t \ge 200 \text{ GeV}$ where top-tagging becomes relevant
- We investigated the relative improvements to constraints on the leading dimension-six operators in top pair production
- Despite the efficient top reconstruction offered by jet substructure algorithms in the sensitive region of phase space, combined limits from boosted and resolved events offer overall only marginal improvements

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions
Copolusi				

- The boosted selection is generally saturated by large statistical uncertainties for the expected \mathcal{L}_{int} of Run II, rendering improvements to systematics less important relative to the resolved selection
- Boosted top quarks from tt production are sensitive to NP-induced modified gluon self-couplings through Q_G. The remaining operators' weaker scaling with p_T leads to relatively looser bounds.
- For a resolved analysis targeting tops w/ $p_T^t \lesssim 200$ GeV, sensitivity to NP-induced deviations is more of a trade-off between weaker distinguishability from the SM and more plentiful data, with higher statistics and improved systematics offering comparable benefits

• Theoretical uncertainties are not the limiting factors for the forseeable future, but will become relevant at very large \mathcal{L}_{int}

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions
Copolurio	00			

- The boosted selection is generally saturated by large statistical uncertainties for the expected \mathcal{L}_{int} of Run II, rendering improvements to systematics less important relative to the resolved selection
- Boosted top quarks from $t\bar{t}$ production are sensitive to NP-induced modified gluon self-couplings through Q_G . The remaining operators' weaker scaling with p_T leads to relatively looser bounds.
- For a resolved analysis targeting tops w/ $p_T^L \lesssim 200$ GeV, sensitivity to NP-induced deviations is more of a trade-off between weaker distinguishability from the SM and more plentiful data, with higher statistics and improved systematics offering comparable benefits
- Theoretical uncertainties are not the limiting factors for the forseeable future, but will become relevant at very large \mathcal{L}_{int}

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions
Conclusio	INS			

- The boosted selection is generally saturated by large statistical uncertainties for the expected \mathcal{L}_{int} of Run II, rendering improvements to systematics less important relative to the resolved selection
- Boosted top quarks from tt production are sensitive to NP-induced modified gluon self-couplings through Q_G. The remaining operators' weaker scaling with p_T leads to relatively looser bounds.
- For a resolved analysis targeting tops w/ $p_T^t \lesssim 200$ GeV, sensitivity to NP-induced deviations is more of a trade-off between weaker distinguishability from the SM and more plentiful data, with higher statistics and improved systematics offering comparable benefits

• Theoretical uncertainties are not the limiting factors for the forseeable future, but will become relevant at very large \mathcal{L}_{int}

Recap - $t\overline{t}$ EFT	Constraining EFT in $t\overline{t}$ Production	Analysis Strategy	Results	Summary and Conclusions
Conclusio	INS			

- The boosted selection is generally saturated by large statistical uncertainties for the expected \mathcal{L}_{int} of Run II, rendering improvements to systematics less important relative to the resolved selection
- Boosted top quarks from tt production are sensitive to NP-induced modified gluon self-couplings through Q_G. The remaining operators' weaker scaling with p_T leads to relatively looser bounds.
- For a resolved analysis targeting tops w/ $p_T^t \lesssim 200$ GeV, sensitivity to NP-induced deviations is more of a trade-off between weaker distinguishability from the SM and more plentiful data, with higher statistics and improved systematics offering comparable benefits
- Theoretical uncertainties are not the limiting factors for the forseeable future, but will become relevant at very large \mathcal{L}_{int}

Backup - HEPTOPTAGGER

Figure : HEPTOPTAGGER Illustration - Image: (Aad et al. 1306.4945)

Backup - HEPTOPTAGGER

Figure : HEPTOPTAGGER Illustration - Image: (Aad et al. 1306.4945)

Liam Moore