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UFO
•Generator independent output with full 

model information 

•Contains the list of particles, parameters,  
vertices, decays (1to 2), coupling orders 

•vertices are split into Lorentz structures, 
colours and couplings and all are included 
in the model!

! igs Ta
ij ! µ

•Used in MG5, Herwig, Gosam, Sherpa
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Automated EFT in MC
•From FeynRules :  

•All the Feynman rules from any effective operator 

•Several sets of dim6/8 operators implemented  

•Output readable by MC 

•UFO with EFT 

•MG5 (J. Alwall, M. Herquet, F. Maltoni, O. 
Mattelaer and T. Stelzer,JHEP 1106(2011) 128) 

•Sherpa (S. Höche, S. Kuttimalai, S. Schumann and 
F. Siegert, Eur. Phys. J. C 75 (2015) no.3,  135) 
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Top EFT in MC
•Whizard :  

•Interfaced with FeynRules 

•UFO support in progress 

•full Dim6 operators 

•top “anomalous” interations 

•Single top studies (F. Bach and T. Ohl, PRD86 
(2012) 114026, PRD90 (2014) no.7, 074022) 

•lepton colliders (M. Vos et al., arXiv:1604.08122) 

•Other EFT in Herwig, … but not for Top
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Top pair production
O(8,3)

Qq = øQ! µ Ta" bQøqL ! µ Ta" bqL

O(8,1)
Qq = Q̄�µT aQq̄L �µT

aqL

O8
Qd = øQ! µ TaQ ødR ! µ TadR

O8
Qu = Q̄�µT aQūR�µT

auR

O8
tq = øt! µ Tat øqL ! µ TaqL

O8
td = øt! µ Tat ødR ! µ TadR

O8
tu = øt! µ Tat øuR ! µ TauR

OG = fabcGµ!
a Gb

!" G
"
µ
c

O! G = Gµ⌫
a Ga

µ⌫ ! †!

OtG = øQ�µ! T at÷�Ga
µ!

Clever S-octet basis!

S. Willenbrock, C. Zhang, PRD83 (2011) 034006

Maximise number of 4F: no contribution to gluon fusion 

would only affect the standard gluon vertices like for instance the interactions generated by
the operatorOG = fABCGA

µ! G
B !" GC

"
µ (see Refs. [24, 35Ð37] for a study of its effects on top

pair production). Hence we consider the set of operators which affect the tøt production at
tree-level by interference with the SM amplitudes. Both at the Tevatron and at the LHC,
the dominant SM amplitudes are those involving QCD in quark-antiquark annihilation or
gluon fusion. Therefore we shall neglect all new interactions that could interfere only with
SM weak processes likeqøq → Z(γ) → tøt. Our analysis aims at identifying the effects of the
new physics on top pair production, so it ignores the operators which affect the decay of
the top [24, 28, 38]. We are then left with only two classes of dimension-six gauge-invariant
operators [33]:

• operators with a top and an antitop and one or two gluons, namely

Ogt =
[

øtγµTAD! t
]

GA
µ! ,

OgQ =
[ øQγµTAD! Q

]

GA
µ! ,

Ohg =
[(

H øQ
)

σµ! TAt
]

GA
µ! , (1)

whereQ = ( tL, bL) denotes the left-handed weak doublet of the third quark generation,
t is the right-handed top quark,TA are the generators ofSU(3) in the fundamental
representations normalized to tr(TATB) = δAB/2.

• four-fermion operators with a top and an antitop together with a pair of light quark
and antiquark that can be organized following their chiral structures:

øLLøLL:

O
(8,1)
Qq =

( øQγµTAQ
)(

øqγµTAq
)

,

O
(8,3)
Qq =

( øQγµTAσIQ
)(

øqγµTAσIq
)

, (2)

øRR øRR:

O
(8)
tu =

(

øtγµTAt
)(

øuγµTAu
)

,

O
(8)
td =

(

øtγµTAt
)(ødγµTAd

)

, (3)

øLL øRR:

O
(8)
Qu =

( øQγµTAQ
)(

øuγµTAu
)

,

O
(8)
Qd =

( øQγµTAQ
)(ødγµTAd

)

,

O
(8)
tq =

(

øqγµTAq
)(

øtγµTAt
)

, (4)

øLRøLR:

O
(8)
d =

( øQTAt
)(

øqTAd
)

, (5)

whereσI are the Pauli matrices (normalized to tr(σIσJ ) = 2 δIJ), q and u and d are
respectively the left- and right-handed components of the Þrst two generations.

3

O(8)
ud = øQT atødRT aqL 0

mq = 0

D
iff

er
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Operators with light quarks

q

q
!

t

t

!

OR v =
!
øtR! µT AtR

" #

q= u,d

!
øq! µT Aq

"

OR a =
!
øtR! µT AtR

" #

q= u,d

!
øq! µ ! 5T Aq

"

O!
R r =

!
øtR! µT AtR

" !
øuR! µT AuR ! ødR! µT AdR

"

$ %& '

+ tR " QL, R " L

O(8,3)
Qq =

!
øQL! µT A" IQL

"!
øqL! µT A" IqL

"

O(8)
d =

(
øQLT AtR

) (
øqLT AdR

)
"# md

C. Degrande (UIUC/UCL) 7 June 2012, Vancouver 7 / 18

C.D., J.-M. Gerard, C. Grojean, F. Maltoni, G. Servant, JHEP 1103 (2011) 125

ORv = øt�µT at
!

u,d,s,c

øq�µT
aq

ORa = øt�µT at
X

u,d,s,c

øq�µ�5T
aq

OLa = Q̄! µT aQ
X

u,d,s,c

q̄! µ ! 5T
aq

OLv = Q̄�µT aQ
!

u,d,s,c

q̄�µT
aq

OtG = øQ�µ! T at÷�Ga
µ!



C. Degrande

Top pair production

logo.pdf

Operators with gluons

Ohg =
⇤�

H øQL
⇥

! µ! T AtR
⌅

GA
µ!

t

t

!

g

g t

t

!

g

C. Degrande (UIUC/UCL) 7 June 2012, Vancouver 6 / 18

logo.pdf

Operators with light quarks

q

q
!

t

t

!

OR v =
!
øtR! µT AtR

" #

q= u,d

!
øq! µT Aq

"

OR a =
!
øtR! µT AtR

" #

q= u,d

!
øq! µ ! 5T Aq

"

O!
R r =

!
øtR! µT AtR

" !
øuR! µT AuR ! ødR! µT AdR

"

$ %& '

+ tR " QL, R " L

O(8,3)
Qq =

!
øQL! µT A" IQL

"!
øqL! µT A" IqL

"

O(8)
d =

(
øQLT AtR

) (
øqLT AdR

)
"# md

C. Degrande (UIUC/UCL) 7 June 2012, Vancouver 7 / 18

C.D., J.-M. Gerard, C. Grojean, F. Maltoni, G. Servant, JHEP 1103 (2011) 125

ORv = øt�µT at
!

u,d,s,c

øq�µT
aq

ORa = øt�µT at
X

u,d,s,c

øq�µ�5T
aq

OLa = Q̄! µT aQ
X

u,d,s,c

q̄! µ ! 5T
aq

OLv = Q̄�µT aQ
!

u,d,s,c

q̄�µT
aq

OtG = øQ�µ! T at÷�Ga
µ!



C. Degrande

Top pair production

logo.pdf

Operators with gluons

Ohg =
⇤�

H øQL
⇥

! µ! T AtR
⌅

GA
µ!

t

t

!

g

g t

t

!

g

C. Degrande (UIUC/UCL) 7 June 2012, Vancouver 6 / 18

logo.pdf

Operators with light quarks

q

q
!

t

t

!

OR v =
!
øtR! µT AtR

" #

q= u,d

!
øq! µT Aq

"

OR a =
!
øtR! µT AtR

" #

q= u,d

!
øq! µ ! 5T Aq

"

O!
R r =

!
øtR! µT AtR

" !
øuR! µT AuR ! ødR! µT AdR

"

$ %& '

+ tR " QL, R " L

O(8,3)
Qq =

!
øQL! µT A" IQL

"!
øqL! µT A" IqL

"

O(8)
d =

(
øQLT AtR

) (
øqLT AdR

)
"# md

C. Degrande (UIUC/UCL) 7 June 2012, Vancouver 7 / 18

C.D., J.-M. Gerard, C. Grojean, F. Maltoni, G. Servant, JHEP 1103 (2011) 125

ORv = øt�µT at
!

u,d,s,c

øq�µT
aq

ORa = øt�µT at
X

u,d,s,c

øq�µ�5T
aq

OLa = Q̄! µT aQ
X

u,d,s,c

q̄! µ ! 5T
aq

OLv = Q̄�µT aQ
!

u,d,s,c

q̄�µT
aq

OtG = øQ�µ! T at÷�Ga
µ!



C. Degrande

Top pair production

logo.pdf

Operators with gluons

Ohg =
⇤�

H øQL
⇥

! µ! T AtR
⌅

GA
µ!

t

t

!

g

g t

t

!

g

C. Degrande (UIUC/UCL) 7 June 2012, Vancouver 6 / 18

logo.pdf

Operators with light quarks

q

q
!

t

t

!

OR v =
!
øtR! µT AtR

" #

q= u,d

!
øq! µT Aq

"

OR a =
!
øtR! µT AtR

" #

q= u,d

!
øq! µ ! 5T Aq

"

O!
R r =

!
øtR! µT AtR

" !
øuR! µT AuR ! ødR! µT AdR

"

$ %& '

+ tR " QL, R " L

O(8,3)
Qq =

!
øQL! µT A" IQL

"!
øqL! µT A" IqL

"

O(8)
d =

(
øQLT AtR

) (
øqLT AdR

)
"# md

C. Degrande (UIUC/UCL) 7 June 2012, Vancouver 7 / 18

C.D., J.-M. Gerard, C. Grojean, F. Maltoni, G. Servant, JHEP 1103 (2011) 125

ORv = øt�µT at
!

u,d,s,c

øq�µT
aq

ORa = øt�µT at
X

u,d,s,c

øq�µ�5T
aq

OLa = Q̄! µT aQ
X

u,d,s,c

q̄! µ ! 5T
aq

OLv = Q̄�µT aQ
!

u,d,s,c

q̄�µT
aq

OtG = øQ�µ! T at÷�Ga
µ!



C. Degrande

-4 -2 0 2 4
-4

-2

0

2

4

ctG× (1TeV / �� )2

c V
v×

(1
Te
V
/��

)2

!"# ! !!"# ! !

! !! !
$! !$! !

Total cross-section
NNLO+NNLL, Czakon, Fiedler & Mitov, PRL110  25, 252004

Tevatron 09/2012 
Combination!

7.65±0.20±0.36pb-1

CMS, 7TeV 
arXiv : 1208.2671 ,

161.9±2.5±5.1±3.6pb-1

CMS, 8TeV 
JHEP08 (2016) 029 
244.9±1.4+6.3±6.4pb-1

cVv = cRv + cLv

CMS, 13TeV 
arXiv : 1611.04040 ,

792±8±37±21pb-1

Tevatron invariant 
mass
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FB asymmetry
Aobs

FB = 0 .162± 0.047

ASM
FB = 0.066± 0.007

cAa = cRa ! cLa

�AFB = 0.047+0.016
�0.011cAa

�
1 TeV

�

⇥2

cAa

!
1 TeV

!

" 2

= 2 .04+2 .12
! 1.38TeV! 2

(CDF:1211.1003 )

http://arxiv.org/abs/1211.1003
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Aobs
FB = 0 .162± 0.047

ASM
FB = 0.066± 0.007

cAa = cRa ! cLa

�AFB = 0.047+0.016
�0.011cAa

�
1 TeV

�

⇥2

cAa

!
1 TeV

!

" 2

= 2 .04+2 .12
! 1.38TeV! 2

Only parameter!

LHC7 AC (Atlas,1311.6724): cAa

�
1 TeV

�

⇥2

= �0.72+1.77
�0.82TeV

�2

(CDF:1211.1003 )

http://arxiv.org/abs/1211.1003
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Spin correlations
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Spin correlations at the LHC
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�
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b=0.02±0.027
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Madgraph5_aMC@NLO

•Computation of the born 

•Computation of the real 

•Computation of the loop 

•Matching with parton 
shower ‘à la’ MC@NLO

Automated NLO computation
MG5

MadFKS (IR)

MadLoop



MadLoop

•Box, Triangle, Bubble and Tadpole are 
known scalar integrals 

•Loop computation = find the coefficients 

•Tensor reduction (OPP) 

•R : rational terms should be partially 
provided 

Prelims History Present

Tensor Reduction 2

A 1! loop =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei

+
∑

i

ai Tadpolei + R

where

Tadpolei =
∫

dnq̄ 1
øD0

Bubblei =
∫

dnq̄ 1
øD0

øD1

Trianglei =
∫

dnq̄ 1
øD0

øD1
øD2

Boxi =
∫

dnq̄ 1
øD0

øD1
øD2

øD3

analytic work is necessary

Roberto Pittau Automatizing 1-loop multi-leg calculations for LHC (and ILC)



To be provided : R2 

Finite set of vertices that can be 
computed once for all

What are the R2 rational terms?

øA (øq) =
1

(2! )4

!
dd øq

øN (øq)
øD0

øD1 . . . øDm! 1
, øDi = ( øq + pi )

2 ! m2
i

øN (øq) = N (q) + "N (÷q, q, ")

where øX lives in d dimension, X in 4, "X in ".

R2 deÞnition

R2 " lim
�" 0

1

(2! )4

!
dd øq

"N (÷q, q, ")
øD0

øD1 . . . øDm! 1

Finite (# 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 18 / 30

What are the R2 rational terms?

Ā (q̄) =
1

(2⇥)4

�
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

, D̄i = (q̄ + pi)
2 � m2

i

N̄ (q̄) = N (q) + ⇥N (q̃, q, �)

where X̄ lives in d dimension, X in 4, ⇥X in �.

R2 definition

R2 ⇥ lim
�⇥0

1
(2⇥)4

�
dd q̄

⇥N (q̃, q, �)
D̄0D̄1 . . . D̄m�1

Finite (⇤ 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 18 / 30

d 4 ε

in MadLoop [4] available in the MadGraph5 aMC@NLO framework leading to a complete
automated tool for NLO computation. So far only the SM model has been implemented despite
that MadLoop is based onMadGraph5 [5] for which many BSM models are available. As a
matter of fact, the evaluation of the loop corrections requires two extra ingredients that so far
have been added by hand in the model. The Þrst one is the counterterms introduced by the
renormalization procedure to absorb all the UV divergences arising at the one-loop level. While
the divergences can be extracted from the scalar integrals, any renormalization scheme with a
non-trivial Þnite part in the counterterms requires a careful redeÞnition of the Þelds and of the
independent parameters of the model and the resolution of the renormalization conditions. The
second missing element depends on the actual method used to perform the tensor decomposition
of the loop amplitudes. In the case of OPP, it is a part of the rational term. In d dimensions,
any one-loop amplitude can be written as

A (q) =
1

(2! )4

!
ddq

N (q)

D 0D 1 . . . D m ! 1
, (2)

with the propagator denominators given by D i ! (q + pi )
2 " m2

i and wheremi are the masses
of the particles in the loop, q is the loop momentum andpi are linear combinations of external
momenta. All the quantities written with a bar live in d dimensions and can therefore be split in
a four dimensional part x and a d" 4 dimensional part ÷x as follow x ! x + ÷x. Rational terms are
Þnite contributions generated by the part of the integrand linear in d " 4. One then organizes
the rational part in two terms, R1 and R2. The rational term R1 is due to the d " 4 component
of the integrand denominators and can be computed as the four-dimensional piece but using a
di! erent set of scalar integrals [6]. TheR2 terms are deÞned as the Þnite part due to thed " 4
component of the numerator

R2 ! lim
! ! 0

1

(2! )4

!
ddq

÷N (÷q, q,")

D 0D 1 . . . D m ! 1
, (3)

where " is deÞned byd ! 4 " 2". We use here the Õt Hooft-Veltman scheme [7] such that all
the quantities in the loop, i.e. the loop momentum, the metric and the Dirac matrices live in d
dimensions:

#µ " #µ " = d, (4)

$µ $µ = d1, (5)

where 1 is the identity matrix in Dirac space. The external momenta and polarization vectors
have only four dimensional components. The Dirac matrices ind dimensions$u are chosen to
anti-commute with $5 [8, 9, 10]. Therefore, the cyclic property of Dirac trace has to be dropped
to avoid algebraic inconsistency. The result of the evaluation of the integral in (3) is a set of
process independent Feynman rules. As a consequence, they should only be computed once for
each model. TheR2 term are the second missing ingredient as they had to be computed so far by
hand for each model. TheR2 terms are known for the full SM [11][12] and for QCD corrections
to the MSSM [13]. A package for the automatic computation of theR2 terms for the SM has
also been developed [14].

The purpose of this paper is to show that the procedure of determining the UV counterterms
and the R2 terms can be automated for any Lagrangian. The computation of the missing ele-
ments is done by threeMathematica packages,FeynRules [15], NLOCT and FeynArts [16].
NLOCT is a completely new package, new functionalities have been added toFeynRules to
renormalize models and output the NLO vertices in theUFO format [17] while FeynArts has
not been altered. The only requirement is that the model should be written in the Feynman
gauge. At this stage, the package is restricted to renormalizable theories. Renormalizability
is here understood strictly and not order by order like for e! ective Þeld theories. Namely, the
dimension of the operators in the Lagrangian should be equal to or lower than four. Although
the R2 terms are not always required, the UV counterterms are needed for any one-loop com-
putation. Therefore, the automatically generated models can be used to provide the necessary

2
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b(ij ; ÷q2) = b(ij ) + ÷q2b(2) (ij ) ,

c(ijk ; ÷q2) = c(ijk ) + ÷q2c(2) (ijk ) .

Z̄i

Like for the 4 dimensional part but with a different set 
of integrals

Due to the ℇ dimensional parts of the denominators 

Only R = R1+R2 is gauge invariant Check
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Renormalization
External parameters

Same for the conjugate field

Internal parameters are renormalised by replacing 
the external parameters in their expressions

one-loop ingredients for other NLO tools thanMadGraph5 aMC@NLO like GoSam [18] for
example which is already using theUFO format. As an explicit example, we consider the Two
Higgs Doublet Model (2DHM). The 2HDM is a simple but important extension of the SM since
it provides a well deÞned model to search for extra scalar particles.

The paper is organized as follows. The second section focuses on the renormalization of the
Lagrangian and introduces the renormalization conditions for the on-shell scheme. This scheme
is easily extended to complex mass scheme to provide an appropriate treatment of the widths.
The main advantage of those schemes is to avoid the evaluation of the loops on the external legs
and it is used, for example, inMadLoop to make the computation faster. The third section
discusses the algorithm for the computation of the counterterms from the amplitudes. This
section ends with the validation of the algorithm. The 2HDM is brießy introduced in Sect. 4 to
Þx the notation. The R2 and UV counterterm vertices for the 2HDM are given in Sect. 5 and 6
respectively. Finally, the conclusion is given in the last section.

2 Renormalization

2.1 The renormalization constants

In dimensional regularization UV-divergences appear as poles in 1/ ! where d ! 4 " 2! . In a
renormalizable theory, they can absorbed by a redeÞnition of the free parameters and of the
Þelds

x0 ! x + "x,

#0 ! (1 +
1
2

"Z!! )# +
!

"

1
2

"Z!" $, (6)

where x is an external parameter and# and $ are Þelds with the same quantum numbers, the
bare quantities are denoted by an additional zero subscript compared to the renormalized Þelds or
parameters, the renormalization constant are preceded by a" . For the fermions, each chirality is
renormalized independently. The external parameters are independent parameters which values
should be Þxed by experiments. On the contrary, internal parameters are functions of the external
parameters. Internal parameters are also renormalized. However, their renormalization does not
require the introduction of new renormalization constants and is Þxed by their dependence on
the external parameters. The same self renormalization constantsZ!! are used for both the
Þelds and their hermitian conjugates and not its conjugate as required by the complex mass
scheme [19]. Their imaginary parts would otherwise disappear form the hermitian Lagrangian.
For example, the kinetic term of a scalar has an imaginary part if

#0 ! (1 + 1
2 "Z!! )#

# 
0 ! (1 + 1

2 "Z!! )# 

"
# %µ #0%µ # 

0 ! (1 + "Z!! )%µ #%µ #  (7)

to absorb the imaginary part coming from the corresponding term of the two point loop ampli-
tude. On the contrary, they would be no imaginary part if the conjugated Þeld is renormalized
with the conjugate of the renormalization constant, i.e.

#0 ! (1 + 1
2 "Z!! )#

# 
0 ! (1 + 1

2 "Z !
!! )# 

"
# %µ #0%µ # 

0 ! (1 + $ "Z!! )%µ #%µ #  . (8)

In the on-shell scheme, those constants are real and therefore also identical for both the Þelds
and their conjugates. Similarly, external parameters inFeynRules are real and therefore renor-
malized by the same constants as their conjugates. Again, this is valid for both schemes even if
the external parameters have complex renormalization constants as in the complex mass scheme.
The renormalization is therefore identical for those two renormalization schemes but only the
bare Lagrangian is hermitian in the complex mass scheme since the renormalization constants
are complex in this scheme. The bare Lagrangian can also be split into the renormalized one

3

gg (1 + ! Zgg) T L
ggg

�
1 + 1

2 !" s + 3
2 ! Zgg

�
T L

gggg (1 + !" s + 2 ! Zgg) T L
Fixed by



Renormalization The renormalization conditions should be chosen to ease as much as possible the problem at
hand or to make the physics transparent. In this respect, the renormalized mass is identiÞed to
the physical one, the real part of the pole of the propagator in the on-shell scheme such that its
value is given by the mass measurement. Furthermore it allows to get rid of the corrections on
the external legs of the amplitudes by forcing the two-point functions to vanish on-shell. More
details on the on-shell scheme can be found in Ref. [21]. In the following, we will given the
renormalization conditions as they are implemented in the NLOCT package.

First, the tadpole counterterms are chosen to cancel the loop corrections such that no tadpole
should be included in any computation. Secondly, the mass and the wave functions renormaliza-
tion constants are Þxed by the conditions on the two-point functions. Writing the renormalized
fermion two-point function as

i ! ij (!p ! mi ) + i
⇥
f L

ij

�
p2�

!p" ! + f R
ij

�
p2�

!p" + + f SL
ij

�
p2� " ! + f SR

ij

�
p2� " +

⇤
, (10)

where " ± = 1± ! 5
2 and the f functions contain both the loop and counterterm contributions, the

renormalization conditions in the on-shell scheme for the fermions are

÷"
⇥
f L

ij

�
p2�mi + f SR

ij

�
p2�⇤

���
p2 = m 2

i

= 0 ,

÷"
⇥
f R

ij

�
p2�mi + f SL

ij

�
p2�⇤

���
p2 = m 2

i

= 0 ,

÷"

2mi

#
#p2

⇥�
f L

ii

�
p2� + f R

ii

�
p2��mi + f SL

ii

�
p2� + f SR

ii

�
p2�⇤ + f L

ii

�
p2� + f R

ii

�
p2�

� ���
p2 = m 2

i

= 0 .

(11)

The function ÷" takes the real part of the loop function but not of the couplings or of the mixing
parameters. The o! -diagonal conditions allow to absorb the corrections that mix di! erent ßavors
in the wave function renormalizations. The renormalized Þelds are therefore mass eigenstates. If
the two fermion ßavors are massless, the Þrst two conditions are trivially satisÞed and therefore
are replaced by ÷" f L

ij (0) = 0 and ÷" f R
ij (0) = 0 to Þx the renormalization constants. For a

Majorana fermions " , the left and right renormalization constant for the wave function should
be complex conjugate of each other since the left and right handed fermion Þelds are related by

" R = ei " (" L )c (12)

where $ is the Majorana phase. The two Þrst conditions should therefore be equivalent for a
Majorana fermion if only one renormalization constant is used. Similarly, if the renormalized
two-point function for a scalar is

i ! ij
�
p2 ! m2

i

�
+ if S

ij

�
p2� , (13)

and the renormalization conditions read

÷"
⇥
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ij
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= 0
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= 0
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#p2 f S
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p2 = m 2

i

= 0 . (14)

Finally, if the renormalized two-point function of a vector is written as

! i ! ij %µ#
�
p2 ! m2

i

�
! if T

ij

�
p2�

✓
%µ# !

pµ p#

p2

◆
! if V L

ij

�
p2� pµ p#

p2 , (15)
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Finally, if the renormalized two-point function of a vector is written as
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Renormalized mass = Physical mass (no running)
Two-point function vanishes on-shell (No external  
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Renormalization 
Zero momentum scheme available for the gauge couplings

the corresponding renormalization conditions are
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The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the ÷! [19].

Finally, all the external parameters but the masses are renormalized in theMS scheme by
default. Namely, only the pole in

1
"

"
1
"

# # + log (4$) (17)

where # is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is Þxed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as
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wherep1, p2 and k are the incoming momenta of the two fermions and the vector, theh functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant andTa

the generators of the gauge group and should be replaced by the charge for an abelian group.
The Þrst two terms are due to the renormalization of the tree-level vertex. The last pieces
of the Þrst two lines are due to the mixing with another vector V ! (g!

V and g!
A are its vector

and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = # p1 # p2 = 0 then read
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The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the ÷! [19].

Finally, all the external parameters but the masses are renormalized in theMS scheme by
default. Namely, only the pole in

1
✏

"
1
✏

# � + log (4⇡) (17)

where � is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is Þxed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as
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wherep1, p2 and k are the incoming momenta of the two fermions and the vector, theh functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant andT a

the generators of the gauge group and should be replaced by the charge for an abelian group.
The Þrst two terms are due to the renormalization of the tree-level vertex. The last pieces
of the Þrst two lines are due to the mixing with another vector V 0 (g0V and g0A are its vector
and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = # p1 # p2 = 0 then read
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The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the ÷! [19].

Finally, all the external parameters but the masses are renormalized in theMS scheme by
default. Namely, only the pole in
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where # is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is Þxed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as
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wherep1, p2 and k are the incoming momenta of the two fermions and the vector, theh functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant andTa

the generators of the gauge group and should be replaced by the charge for an abelian group.
The Þrst two terms are due to the renormalization of the tree-level vertex. The last pieces
of the Þrst two lines are due to the mixing with another vector V 0 (g0

V and g0
A are its vector

and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = # p1 # p2 = 0 then read

%g
g

+
1
2

%ZV V +
1
2

%Z R
F F +

1
2

%Z L
F F +

g0
V

2g
%ZV 0V + hV (0) + hS (0) = 0 (19)

1
2

%Z R
F F #

1
2

%Z L
F F +

g0
A

2g
%ZV 0V + hA (0) = 0 . (20)

Gauge invariance implies that the second is always satisÞed as well as

1
2

%Z R
F F +

1
2

%Z L
F F + hV (0) + hS (0) +

g0
A

2g
%ZV 0V = 0 . (21)

Consequently, the renormalization of the gauge coupling is Þxed by
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Zero momentum scheme available for the gauge couplings

the corresponding renormalization conditions are

÷!
!
f T

ij

"
p2#$%

%
%
p2 = m 2

i

= 0

÷!
!
f T

ij

"
p2#$%

%
%
p2 = m 2

j

= 0

÷!
&

!
! p2 f T

ii

"
p2#

' %
%
%
p2 = m 2

i

= 0 . (16)

The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the ÷! [19].

Finally, all the external parameters but the masses are renormalized in theMS scheme by
default. Namely, only the pole in
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where # is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is Þxed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as
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wherep1, p2 and k are the incoming momenta of the two fermions and the vector, theh functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant andTa

the generators of the gauge group and should be replaced by the charge for an abelian group.
The Þrst two terms are due to the renormalization of the tree-level vertex. The last pieces
of the Þrst two lines are due to the mixing with another vector V ! (g!

V and g!
A are its vector

and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = # p1 # p2 = 0 then read
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The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the ÷! [19].

Finally, all the external parameters but the masses are renormalized in theMS scheme by
default. Namely, only the pole in

1
✏

"
1
✏

# � + log (4⇡) (17)

where � is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is Þxed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as
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wherep1, p2 and k are the incoming momenta of the two fermions and the vector, theh functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant andT a

the generators of the gauge group and should be replaced by the charge for an abelian group.
The Þrst two terms are due to the renormalization of the tree-level vertex. The last pieces
of the Þrst two lines are due to the mixing with another vector V 0 (g0V and g0A are its vector
and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = # p1 # p2 = 0 then read
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The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the ÷! [19].

Finally, all the external parameters but the masses are renormalized in theMS scheme by
default. Namely, only the pole in
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where # is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is Þxed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as
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wherep1, p2 and k are the incoming momenta of the two fermions and the vector, theh functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant andTa

the generators of the gauge group and should be replaced by the charge for an abelian group.
The Þrst two terms are due to the renormalization of the tree-level vertex. The last pieces
of the Þrst two lines are due to the mixing with another vector V 0 (g0
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A are its vector

and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = # p1 # p2 = 0 then read
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Consequently, the renormalization of the gauge coupling is Þxed by
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MS scheme for everything else (Nothing in SM)
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•From FeynRules :  

•automated computation of NLO CT                  
extended for EFT (Renor.!) 

•UFO@NLO  

•MG5_aMC@NLO (J. Alwall et al., JHEP 1407 (2014) 079) 

•Fermion loop with 4F 

•Running (mt or MS) 

•In progess in Sherpa 

•Some Top EFT @ NLO already without 4F (See E. 
Vryonidou, G.Durieux)

Top EFT at NLO in MC

=?         -1         or        +1



C. Degrande

Going to TopEFT @ NLO
•More operators 

•all the singlet 

!

!

•4top and 4 light quarks 

!

1



C. Degrande

Conclusion

•TopEFT available in MC 

•Future : NLO 

•Reduction of the errors 

•more operators per process 

•Which renormalization? 

•in the fit


