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: ~ LHC ring:
T T 27 km circumference

| Run 1 (2010-2013): 4+4 TeV
Run ”. (2015 2018) 6 5 =+ 6 5 TeV
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JI00IS (2): Detectorns

ATLAS (A Tor0|dal Lhc ApparatuS) 33
:;' e 25 m diameter, 46 m length, 7’000 tons )
» 3’000 scientists (including 1’000 grad students) g
e 150 million channels %
* 40 MHz collision rate
e Event rate after filtering: 300 Hz in Run 1; up to *

1’000 Hz in Run 2 \g



General Purpose,

proton-proton, heavy ions
Discovery of new physics:
Hig
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General Purpose,

proton-proton, heavy ions

Discovery of new physics: /fron“er
HIQQS SuperSymmetry B

Heavy ions, pp
(state of matter of early universe)
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Results so far

Many... the most spectacular

one being

« 04 July 2012: Discovery of a | -
“Higgs-like particle” N

- March 2013: The particle is
Indeed a Higgs boson

« 08 0Oct 2013/ 10 Dec 2013:
Nobel price to Peter Higgs and
Francois Englert

« CERN, ATLAS and CMS explicitly
mentioned

10°k

Local P,




What is the LHC Data?

= 150 million sensors deliver data .  Raw data:
... 40 million times per second - Was a sensor hit?
- H h ?
= Generates ~ 1 PB per second  Whattan

QATLAS

nH cth

Reconstructed data:
. Momentum of tracks (4-vectors)
. Origin

. Energy in clusters (jets)

. Particle type
Calibration information

Computing in HEP - ngge Meinhard at CERN.ch 06-Jul-2016



HEP Computing

“Online” — Real time
Operated and funded
as part of the detector
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“Raw Data” ~ 1-10 GB/s




HEP Computing

“Online” — Real time

Operated and funded
as part of the detector

'lil KHz

WLCG l “Raw Data” ~ 1-10 GB/s
Reconstruction Calibration Monte Carlo Simulations

W

Data analysis

Background

# events

Relevant quantity « .
Offline” - Asynchronous




Nature of the Computing Problem

- Enormous numbers of collisions of proton bunches with each
other

« Data from each collision are small (order 1...10 MB)
«  Each collision independent of all others

- No supercomputers needed

«  Most cost-effective solution is standard PC architecture (x86) servers
with 2 sockets, SATA drives, Ethernet network

« Linux (RHEL variants: Scientific Linux, CentOS) used everywhere

- Calculations are mostly combinatorics — integer (rather than
floating-point) intensive

)

N/



Scale of the Computlng Problem

. Raw data: order 1...10 MB per collision ATLAS (for example) has a managed
event data set of ~ 200 PB

. 1 kHz, for ~7.10° live seconds / year »  CERN data archive on tape is ~130 PB
> 7 PBlyear .... per detector

- Several copies, derived data sets,
replicated many times for performance,

H b H | t t Business emails sent
accessipilty, etc 3000PB/year In 2012: 2800 exabytes
Experiments Production Data in CASTOR (Doesn’t count; not managed as created or replicated
1 EB . . . . : : 16 a coherent data set) 1 Exabyte = 1000 PB
~14x growth
.. 108 PB [ expected 2012-2020
17) 4
] 100w Facebook uploads
& 180PB/year
& 1apB |
L)
1] “
E] 18 H 2
o -
-5 &
n
I k3
-l
2 5
[N -=
- 1M 5
c =
-]
o 100 TB [
-
w
h-]
4 {188 k
& 18 TB
TOTAL Data Volune
TOTAL Data VYolume on tape
TOTAL Wb Files
1 1B L 1 L L L L 10 k
Apr Jul Sep Nov Jan Apr Jun
2603 2005 2607 2809 2812 2614 2616

Generated on Jun 87, 2016



The Worldwide LHC Computing Grid

Tier-2 sites
(about 160)

Tier-1 sites
10 Gh's Inks.
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WLCG: An international collaboration to distribute and analyse LHC data

Integrates computer centres worldwide that provide computing and storage
resource into a single infrastructure accessible by all LHC physicists
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The Worldwide LHC Computing Grid

Tier-2 sites .
(about 160) BE nearly 170 Sltes,

Tier-0 (CERN): 40 countries

data recording,
reconstruction and

Tier-1 sites
distribution > s 2 - ~600’000 cores

500 PB of storage

Tier-1:
permanent storage, > 2 million
;en-glryc:sssmg, jobs/day
10-100 Gb links
Tier-2:
Simulation,

end-user analysis

WLCG: An international collaboration to distribute and analyse LHC data

Integrates computer centres worldwide that provide computing and storage
resource into a single infrastructure accessible by all LHC physicists

Computing in HEP - Helge Meinhard at CERN.ch



WLCG — a World-wide Infrastructure
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WLCG — a World-wide Infrastructure
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LHCONE: A global infrastructure for the High Energy Physics (LHC and Belle Il) data management

-
CANARIE : NORDUnet
I‘}. P I Canada SCU!I".‘UEnT UK Nordic . e
‘,’ IHEP-ATLAS ', ‘ G{LIORbLTIP TRIUMF-T1 oo NDGF-T1b  NDGF-T1 J° T
glo i
miygrmal "“‘*“,_.
B ~_ IHEPCMS _ :’) A - — L

SvnaadeT

SINET
Japan

.a'
{Chicagn) starlight Netheri.lght CERN
{Chlcam) (J’H'l'ls am) CERNLl ht) KkisT

KEK T1 cic Geneva Korea 3/ Geneva
OmniPoP CERN-T1 TIFR
(Chicago) India
Ficerp .
iU Tokyo ! India
Korea
,_b, P, ., \ % RWTH Germany
f = KIT
“ KREONET2 \ FNAL-T1 PNNL-T1 gs1 DE-KIT-T1
% W DESY Wup.U
A KNU

P

4" ARNES™,

— RENATER i

Pacificwave ¥

ASGC-T1 (Los IN2P3 France CEA «_SIGNET _#
ASGC2 Angeles)

(10 sites) RPN

cc.INzp3-T1  (IRFU)
NCU NTU

e
UWisc SoW
}’ TEIN * Vanderblit o ternetz  Harvard RedIRIS
(proposed}r LAl -1 Spain = Romania ualc
... . (Tsites) CNAF-T1 ool NIHAM ISS 1TIM
- - ...J ]
AT . P, PIC-T1 INFN NIPNE x3
LT . Pisa Tm—
CERN 2 cubl - (Miami)
< Mexico 3 .
¢ ' 28 May 2015 — WEJohnston, ESnet, wej@es.net
canare W@ SSGARR N &t STHARLIGHT", TN L ) Uchi |_HG Tier 1/2/3 ALTAS and CMS yellow outline
G o : i ~" "RNP/ANSP "’ O LHCONE VRF domain KEK Belle Il Tier 112 incicates
ZIRIS % ] R B LHC+Belle Il
. _ L% HEPGndI Brazil sprace! 3‘ D LHCONE VRF aggregater network LHC ALICE or LHCb il
cully, IR TR, {5 Yoy @ ESnet SLUERY) ! e V| /=, Regional R&E communication nexus [DRIL) Sites that manage their own LHCONE routing
-DFN_ = iy i = [+ 1 - -m f or link/VLAN provider gl Communication links: 1, 10, 20/30/40, and 100Gb/s
] M_{J ’ ICRK’_"')ET = w_ IiUE\P_], o . See hitp:/lhcone.net for details.




: ..nl...2;,..I||.||..2,,.nl|I|||.2,;'III||II||I.2,2||||“|“Iljg........|.2,,..|||||||!|l|||||

2016-05-11 00:00 to 2016-06-08 00:00 UTC 3

32 PB

m afs

W alice

0 ams

M atlas

M cms

B compass

W b

W na6i

W ntof
I W user
2016

Transfered Data Amount (TB )
I
2
8

" Q Global transfer rates CPU: 250 M core-hours/month
increased to > 35 GB/s

Malice Watlas Wcms ®lheh

Billion HSO06-hours

Throughput (MB/s)

| M alice Matlas  cms M Iheh |




Distributed model

. Performance & reliability of the networks has exceeded ar_as from 2011:
early expectations or fears relaxing' the hierarchy

Direct mesh of Tier 2 data flows,

. 10 Gb/s - 100 Gb/s at large centres

. >100 Gb/s transatlantic links now in place

. Many Tier 2s connected at 10 Gb/s or better

. NB. Still concern over connectivity at sites in less-well

connected countries

. Strict hierarchical model of Tiers evolved even during
Run 1 to make best use of facilities available

. Move away from the strict roles of the Tiers to more
functional and service quality based Roveid

. Better use of the overall distributed system » /—ﬁ 3
. Focus on use of resources/capabilities rather / .
than “Tier roles” ol

. Data access peer-peer: removal of hierarchical
structure

GEANT




Tier-0: 15% of WLCG
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@ Number of Procossors in Mayrin 25,215 & Numbcr of Procassars in Wignar 3,418 ® Routcrs (GPRN) 140
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Tier-0: 15% of WLCG

Tier-0 extension:

Wigner Research Centre,
Budapest/Hungary
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Transforming In-House Resources (1)

Before Wigner deployment:
- Physical servers only

. Inefficient resource usage
. Strong coupling of services with HW life-cycle
- Vertical view

. Service managers responsible for entire stack

-  Home-made tools of 10 years ago
. Successful at the time, but Increasingly brittle
. Lack of support for dynamic host creation/deletion
. Limited scalability
- Person-power: (at best) constant
. ... despite many more machines




Transforming In-House Resources (2)

Current situation:
«  Full support for physical and virtual servers
-  Full support for remote machines

Horizontal view

. Responsibilities by layers of service deployment

Large fraction of resources run as private cloud under OpenStack
Scaling to large numbers

(> 15’000 physical, several 100'000s virtual)

Support for dynamic host creation/deletion
. Deploy new services/servers in hours rather than weeks/months
. Optimise operational and resource efficiency




. Future Challenges for LHC
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. Future Challenges for LHC
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m_,,F hallenges for LHC
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m_,,F hallenges for LHC
- = Moore’s law helps,|but not

= sufficient i

| = Large effort spent to iImproves
me  Software efficiency T 0 affordable cnless
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m_,,F hallenges for LHC
- = Moore’s law helps,|but not

= sufficient i

| = Large effort spent to iImproves
me  Software efficiency T 0 affordable cnless
=Exploit multi-threading; new we do something

1500 ————————

instruction sets, ... differently

= Still need factors in termé: of
;cg@s,ﬁ&dg etc. .
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Trends — Software

. Recognizing the need to re-engineer HEP software
. New architectures, parallelism everywhere, vectorisation, data structures, ...

. HEP Software Foundation (HSF) set up (http://hepsoftwarefoundation.orq)
. Community wide — buy-in from major labs, experiments, projects
. Goals:

«  Address rapidly growing needs for simulation, reconstruction and analysis of current and future
HEP experiments

. Promote the maintenance and development of common software projects and components for
use in current and future HEP experiments

- Enable the emergence of new projects that aim to adapt to new technologies, improve the
performance, provide innovative capabilities or reduce the maintenance effort

. Enable potential new collaborators to become involved
. Identify priorities and roadmaps
. Promote collaboration with other scientific and software domains



http://hepsoftwarefoundation.org/

Opportunistic resources

- Today this has become more « Also growing in importance:

Important - Volunteer computing (citizen
. Opportunistic use of: science)
- HPC facilities
« Large cloud providers « BOINC-like (LHC@home,
ATLAS/CMS/LHCb@home,

«  Other offers for “off-peak” or
short periods etc)

« Now can be used for many
workloads — as well as the
outreach opportunities

« All at very low or no cost (for
hardware)
- But scale and cost are
unpredictable




Drivers of Change

- Must reduce the (distributed)

Today (2015) it is cheaper for us to

provisioning layer of compute to operate our own data centres
something simple, we need a hybrid - We use 100% of our resources 24x365
and be able to use:

* Ourownresources . We also get a large synergistic set of

i Commercial resources

resources in many Tier 2s — essentially
for “free” — over and above the pledged
resources

. Opportunistic use of clouds, grids,
HPC, volunteer resources, etc.

. Move towards simpler site H : L
. owever, commercial pricing is now
management pricing

getting more competitive

. gzi?edsuce operational costs at grid . Large scale hosting contracts,
) e commercial cloud provisioning
. Reduce “special” grid middleware

support cost




Scaling up Further: Commercial Clouds (1)

- Additional resources, perhaps later replacing
on-premise capacity
- Potential benefits:

Economy of scale
More elastic, adapts to changing demands

Somebody else worries about machines and
Infrastructure




Scaling up Further: Commercial Clouds (2)

Potential issues:

Cloud provider’s business models not well adapted to
procurement rules and procedures of public organisations

Lack of skills for and experience with procurements
Market largely not targeting compute-heavy tasks

Performance metrics/benchmarks not established
Legal impediments

Not integrated with on-premise resources and/or publicly
funded e-infrastructures




Science Clouds

- Experiments and sites have made many explorations of
use of private and commercial clouds

Cloud infrastructures at many sites

Use of AWS, Google, Rackspace etc. by FNAL, BNL, CERN,
experiments, others

Helix Nebula EC project in Europe (together with other
sciences)

Also testing real commercial procurements to understand cost

So far most use has been simulation, only now looking at data-
intensive use cases




CERN Approach to Commercial Clouds
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CERN Approach to Commercial Clouds

Series of short

procurement
projects of
Increasing size
and complexity

Accessing commercial cloud resources within the
European Helix Nebula cloud marketplace
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CERN Approach to Commercial Clouds

CERN-IT evaluation of Microsoft Azure cloud laaS
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CERN Procurements

- HN-1 (ATOS): Detector - (IBM SoftLayer evaluation)
simulation for ATLAS

_ _ «  HN-3 (T-Systems OTC):
- (Microsoft Azure evaluation) Detector simulation,

reconstruction and analysis

. HN-2 (DBCE): Detector for ATLAS, CMS, ALICE,

simulation for ATLAS, CMS, LH%Zing 4°000 cores July —
ALICE, LHCDb September

« Includes storage for data-
heavy workflows




Future Challenges beyond LHC

Not only LHC, but a number of particle physics
projects with high data rates

Not only particle physics, but also other physics
fields (e.g. astronomy)

Not only physics, but also other sciences (e.qg.
life sciences, material science)




LHC | Integrated view between Europe
(ESPP), USA (P5), Japan
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Not only Physics
Growth of EBI (European
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HELIX NEBULA Science Cloud
Joint Pre-Commercial Procurement

Procurers: CERN, CNRS, DESY, EMBL-EBI, ESRF,
IFAE, INFN, KIT, SURFSara, STFC
Experts: Trust-IT & EGl.eu

The group of procurers have committed
e >1.6M£ of procurement funds

* Manpower for testing/evaluation

» Use-cases with applications & data
* In-house IT resources

To procure innovative laaS level cloud services integrated into a
hybrid cloud model

* Commercial cloud services

e European e-Infrastructures

el FAE Y
Services will be made available to end-users from many research
communities

Co-funded via H2020 (Jan’16-Jun’18)
* Grant Agreement 687614




User groups to be supported

High Energy Physics
LHC experiments
Belle Il
COMPASS

Astronomy

CTA — Cherenkov Telescope Array
MAGIC
Pierre Auger Observatory

Life Sciences
ELIXIR
Euro-Biolmaging
Pan-Cancer
BBMRI
WeNMR

Photon/Neutron science
PETRA I, European XFEL, 3DIX, OCEAN, OSIRIS

Long tail of science
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Technical Challenges

- Compute
« Integration of some HPC requirements

- Storage
«  Caching at provider’s site, if possible automatically (avoid managed
storage)
- Network

«  Connection via GEANT
«  Support of identity federation (eduGAIN) for IT managers
« Procurement

«  Match of cloud providers’ business model with public procurement
rules




HNScICloud — Current Status

Technical and administrative work well advanced
Consortium agreement signed
Subcommittees established and working

Tender announced in Jan 2016

Open Market consultation successfully held on 17
March 2016

Tender material in final phase of preparation
To be published very soon




Conclusions

-  LHC computing has successfully
managed to use unprecedented
data volumes in science

- Initially used purpose-built tools,
many of more general use for data-
intensive science
. Adaptation/generalisation may be

needed

- More and more open-source tools
and new technologies are being
adopted/tested

- Future expectations of data volumes
will still need further innovations

Commercial clouds have a large
potential of addressing the
requirements of public research
organisations for ever more
resources and of dealing with
peak demands

A full integration of commercial
clouds with on-premise resources
and public e-infrastructures is
required
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