Best practices: the
theoretical and
practical
underpinnings of
writing code that's
less bad

Axel Naumann, CERN PH-SFT
Openlab Summer Student Lectures, 2016-07-28

How 1o Write
Bad Code

Axel Naumann, CERN PH-SFT
Openlab Summer Student Lectures, 2016-07-28

Bugs!

Axel Naumann, CERN PH-SFT
Openlab Summer Student Lectures, 2016-07-28

<prelude>

Why Axel?

 Because | can write expert-level bad code.

Why Axel?

 >10 years of ROOT development: the tool for every
physicist's analysis

e Member of the C++ committee

* |ntroduced static analysis tool at CERN

Why you”?

Because you have an impact! Your code is part of
XYZ or on top of XYZ, or replaces XY/Z.

But how do you do it? Example: “which language””
 “community” knowledge: no Haskell, please
* your knowledge: no COBOL, please

e practicality: no assembler, please

Practices

e More than one dev or more than one user: need to
agree on “how”

« CERN has decades of piles of code, lessons
learned:

1. be reasonable!
2. but enforcel

3. fix rules early, adapt new ones slowly

Best Practices

PRACTICES

i

WE WILL BE ADOPTING | IF EVERYONE IS ¢
THE BEST PRACTICES |2 DOING IT, BEST 5| STOP MAKING
IN OUR INDUSTRY, |Z| ~ PRACTICES IS THE :| MEDIOCRITY
JUST LIKE EVERYONE SAME THING AS sl gOUND BAD!
ELSE. ; MEDTIOCRE. g \l/
] §
|) h § ‘.- < -~ SORRY
L BEST £ - § \
: é ; e g
© LU e

Best Practices

* Don't follow today’s best Best Practices blindly
* it will be ridiculed in a month anyway

* But having them is simpler than arguing for /
reminding of each rule’'s motivation

¢ See e.qg. Bjarne Stroustrup @ CppCon
http://sched.co/3vVp

http://sched.co/3vVp

Votivation

e Simpler, consistent read
* mproved communication with fellow coders
* |ess ambiguities means more correct code
* Less bugs; better maintenance

* Best practices win against experimental coding

</prelude>

Menu Du Jour

Coding convention
Interface jargon
Change management
Multi-platform support

Tests: code-correctness, functionality, static
analysis, performance

Disclaimer

* | am not your best practices superhero
e Focuson C++

* experience, usage, need

Coding Convention

Coding Convention

* What is this”
func(val);

Coding Convention

* |t's a counter-example!
func(val);

e func: Member function”? Data member / function
pointer? Some global function pulled in from
header?

* val: local variable declared 100 lines up In the
same function? Or member? Or enum constant?
And where can | find it's declaration?”

Coding Convention

fFunc(fgVal);

it's ROOT - you can tell from the names!
It's a function call
fFunc is a member - so it's a function pointer!

fgVal is a static data member; must be in same
class (or base)

Coding Convention

* Obvious case of improved clarity

* For APIs, user friendly:
e get_track(), getTrack(), GetTrack() - or Track()?
* |DEs can help - but not when reading code!

* Almost all projects employ it

Coding Convention

e Jypical current examples for C++:

* Joint Strike Fighter Air Vehicle C++ Coding
Standards

e MISRA C++
e Both absurd for reasonable environments

* Both have very reasonable ingredients: pick yours!

Coding Convention

* Enforcing needs checkers

 Non-trivial: checker must understand C++: what is
a function, what is a member etc

« Many C-coding convention checkers (indentation!),
few C++, even less open source

* clang is now a reasonable alternative

Interface Jargon

Interface Jargon

PLEASE FOLLOW THE RULES

4
!
LANGUAGE'ANI L L3 L
. | (.
~ L= 1 _
o 3 S
J8Y) o |
» .‘f‘ “ml > > " .: -
: - memecrunch.c

Interface Jargon

e Consistency - we know that already
* Safe code through good APIs!

* unique_ptr / shared_ptr instead of Type* where
ownership Is managed; never require "new
Type()”, “delete var”

 document also parameter pre- and post-
condition: arg1 must be != 0; arg2 will contain...

Interface Jargon

Maintain common idioms throughout API; example
C++ std library:

e jterators: functor;: make XY/Z: allocator etc
Don't screw with your users

* |f Interface looks like A, don't make it do B even if
t's better for you. Change the interface instead.

Threading Support

Different levels
e starts threads to compute faster [multithreaded]

e function can be used on same object in multiple,
concurrent threads without side-eftects [reentrant]

e function can be used on different objects in multiple,
concurrent threads without side-effects (no statics)

 must be locked when accessed through multiple
threads [no threading support]

Threading Support

All kinds need to be clearly documented
Reentrant part of APl needs to be visible
Common contract nowadays:

* const APl means it's reentrant:. no unlocked
mutables! no caches! no hidden state changes!

* No static variables (without locks)! State is
passed as arguments

Threading Support

* Thus threading support is to some extent intertace
jargon (plus good design)

* This is work in progress; has changed rather
recently

* expect further changes; constexpr might play a
bigger role soon

* exposing to >64 threads might change
requirements (Amdahl’s law!) + style

Interface Jargon +
Threading Support

* Automated checking (beyond coding convention)
almost impossible

* requires design work / understanding of the
Interfaces

* Employ change management instead!

Change nagement

/

Change Management

Monitor by a second pair of eyes: two brains are
better than one, especially it one brain is biased

Avoids bugs from creeping in

Also exposes code, new features to additional /
backup developers

Exposes changes to larger horizon: we all think of
changes in different contexts

Change Management

NO, T NEED
CONSTANT
SUPERVISION.

WALLY, DID YOU
GET THOSE COST
ESTIMATES I ASKED
FOR LAST WEEK?

DO YOU
HAVE TIME
TO WATCH?

92107 ©2007 Scott Adams, Inc./Dist. by UFS, Inc.

www.dilbert.com scottadams®acl.com

Change Management

* Can be pre- or post-publication

* Pre-publication
* package tags /tag collector (dying concept)
* package owner merges changes
* formalized patch review

* pair programming

Change Management

* Post-publication
 commit review by package owner

e Post-review risks stability of HEAD of master / dev-
branch

* still reasonable for small changes

* here, too: be pragmatic, not dogmatic

| essons at CERN

e |f it works, it will break

 new OS version, new compiler version, new
language version

* Only way out: embrace change
* put procedures in place to survive change

* benefit from it instead of mitigating it

Multi-Platform Support

Multi-Platform Support

* Problems:
* Dig- versus little-endian
* OS AP
* |ack of language support in compiler

* Experienced developers will get a teeling tor which
language constructs are causing problems

Multi-Platform Support

 Advantages
* general robustness
* easier to follow architecture changes
* will x86_64 be the instruction set of 20307

* more compilers = more opinions on code, more
warnings (that's a good thing!)

Multi-Platform Support

* Checking by building on many platforms, regularly

e Code correctness tests!

lests

DONT YOUTHINK THATIF | WERE WRONG

4 »

N

D KNOW T

Code Correctness Tests

* [Large matrix of builds

* build on all supported platforms

* pbuild with all supported configurations
* |deally after every change

* helps pinpoint culprits

e Current common grounds: the HEAD works.

Code Correctness Tests

* Run build (incremental or full)
* check for errors versus platform
* also check for warnings!

* Run tests

* Build snapshot binaries

* continuous delivery or for bug fix verification

Code Correctness Tests

e Needs automation

* Typical tools: Jenkins / Hudson; Bamboo;
TeamCity; BuildBot and others

* schedule and initiate build on all requiread
machines

* collect output; tilter errors, warnings

e report (web, email) versus code revision

Functionality lests

* “Does my software actually work’”

* Science by itselt; ingredients:
* unit tests; regression tests; integration tests
* rules when to write a test
* testing libraries: cppunit / Googlelest/ ...

e Needs automation!

lopical lests

Memory error checkers - use after free / before
iNnitialization

* e.g. valgrind
Thread error checkers

* e.g. hellgrind

Static Analysis

* Analyzes source code without running it; creating
branch graph to follow possible if etc combinations

* Finds use after delete; impossible it conditions;
MeMOory errors etc

Static Analysis

: int func(char* buf) {

strcat(buf, “<default>”);

int pos;

if (buf[@] != <’) {
std: :cout << “Number between © and 8:\n”;
std::cin >> pos;

}

buf[pos] = 0;

if (!buf) return -1;

return pos;

OooNOT VLI WDNEO

 What's wrong in this snippet?

Voluntary "Homework”

* Do a code review, simulating a static analysis tool

 Compile it here: https://godbolt.org/a/7TUAWCH

e Send your optimal version of
iNnt func(char™ buf)
to axel@cern.ch and I'll send you mine

e |et’'s review one another’s version

* by tomorrow (Friday) noon!

https://godbolt.org/g/7UAWCt
mailto:axel@cern.ch

Static Analysis

* Several tools out there, for instance
* pasic checker: compiler warnings!
* clang static analysis
* Coverity
* Ditfer in set of bugs checked; tracing capabillities

(through function calls etc); user intertface; false
positive rate

CERN Lessons

e Static analysis cannot be replaced by test suite: it
tests the things that “never happen”

* |mproves code stability

* Developers feel “watched”: improves overall code
guality

Performance Test

 Changes can deteriorate performance:
* takes more CPU cycles to get an answer
* takes more RAM
* takes more |/O operations
* takes more disk space

» Criteria vary depending on product

Performance Test

Usually part of release baking
Better yet: automate
Problem: which changes are intentional®?

Tools vary with criteria; e.g. cgroups; massif;
CDash

100%

Current Challenges

Massive multi-threading
Data-oriented programming
C++11 and up

Move every tool into the FOSS world

Conclusion (1/4)

* (Good software development is an art by itself

* complex; many aspects; need to juggle many
tools and often contlicting goals

* Not a reason to avoid it, but needs brain energy

Conclusion (2/4)

* Using the right tools pays off:

e 1 hour more work for one dev can mean 10

minutes saved for 10k users each
$ python3 -c 'print(10.*1E4/60/24/5, "weeks!")'
13.88888888888889 weeks!

* users will trust your software more

Conclusion (3/4)

* Help your team detfine missing procedures

* Review procedures, review tools, review
effectiveness

e cover all aspects: runtime + performance tests,
static analysis - none of that is optional

e gutomatize

e adjust developers’ pain to increase acceptance

Conclusion (4/4)

* Write good code!

