EP Detector Seminar 3 June 2016:

Highlights from the Forum on Tracking Detector Mechanics held in Bonn 23-25 May 2016

http://www.forumbonn.org/

Antti Onnela and Bart Verlaat CERN – EP – DT

https://indico.cern.ch/event/537146/

Outline

- Intro to Forums on Tracking Detector Mechanics
- Forum 2016: Highlights on Mechanics
- Forum 2016: Highlights on Cooling

"Forums on Tracking Detector Mechanics", why?

To bring together engineers, technicians and physicists working on the unique combination of requirements set on mechanics of tracking detector system:

- High-precision measurement of tracks
 - < 10 um level stability in multi-meter sized detectors
- Hermetic to tracks
 - 'Closed' onion-like geometry
- Very low mass (X0)
 - Minimise interaction with particles
- Radiation hard
 - Closest to the interaction points
- High heat load
 - A lot of channels \rightarrow high power density per volume and per mass
- Often low temperature for improved radiation hardness
 - Below dew point = low enough to be quite problematic
- Long-term reliability
 - No, or at best limited, access for maintenance.
- Designed and constructed in multiple sites \rightarrow transports

Such events – for people from different experiments and institutes and also from outside HEP field (including companies) – did not exist, until 2012.

Forums on Tracking Detector Mechanics

2012, CERN

http://indico.cern.ch/event/Forum_on_Tracking_Detector_Mechanics

2013, Oxford (UK) http://www.physics.ox.ac.uk/forum2013/index.asp

2014, DESY (DE) http://forum2014.desy.de/

2015, NIKHEF (NL)

http://forum2015.nikhef.nl

Carlos Marinas, Jochen Dingfelder, Jochen Kaminski, Bernhard Ketzer

Forum on Tracking Detector Mechanics 2016

23-25 May 2016, Bonn (Germany)

A meeting to discuss issues of engineering and integration for present and future tracking systems.

TOPICAL INTEREST

- Mechanical design
 Thermal management
 Quality control
 System integration
- Quality control
 System integration
 FEA Simulations
 Lessons learned

ORGANISING COMMITTEE

Eric Anderssen, Frank Raphael Cadoux, Andrea Catinaccio, Corrado Gargiulo, Claire Gibon, Carlos Marinas, Sebastian Michal, Andreas Mussgiller, Antti Onnela, Paolo Petagna, Hans Postema, Burkhard Schmidt, Paola Tropea, Bart Verlaat, Georg Viehhauser, Patrick Werneke

EP-DT Detector Technologies

Forum 2016

- ~2.5 days
- Format: Presentation 30 min + discussion 15 min. Works well.
- 26 talks
 - 3 industry talks
 - 8 talks on non-CERN activities
- 45 proposals for talks
 - First Forum with substantially more proposals than available slots.
 - Several proposals postponed/declined.
 - But also many combined talks beneficial!

Topics → covered in Forum 2016

- Mechanical design, advanced materials and construction technologies
- Thermal management and cooling
 - Humidity control, monitoring and sealing
 - Installation, integration, disassembly and transportation
 - Stability, alignment and adjustment systems; Requirements for future
 - Quality control, failure and service management
 - Radiation effects on materials and handling of irradiated structures
- Structural and vibration analyses/measurements

Proposals (especially on alignment) received, but finally not fitting in the agenda

- → Organise specific event on alignment results/experience and future requirements, with participation expanded more to physicists? In autumn 2016 at CERN?
- → Consider for Forum 2017 specific themes on "Manufacturing/production phase" (e.g. current ALICE, LHCb upgrades), "Operational experience from existing Trackers"

Highlights on Mechanics

EP-DT Detector Technologies

"Stave" concept widely used (Atlas, LHCb, CMS, ...)

Mechanics and Construction of the LHCb Upstream Tracker Detector, Ray Mountain

INTERIOR EXTERIOR HYBRID-FLEX (BARE STAVE) (FULL-LOADED STAVE) ASICs COOLING TUBE "SNAKE"-SHAPED SENSOR * (displaced for clarity) (* = heat loads) 10 ~3.5 mm CARBON FIBER SHEETS thick STIFFENER (BOTH FRONT AND BACK) WITH ANCHOR TABS BEAMPIPE CUTOUT FOAM (THERMAL) 99.5 mm wide ~1640 mm long ~8 mm thick FOAM (STRUCTURAL) DATA-FLEX *

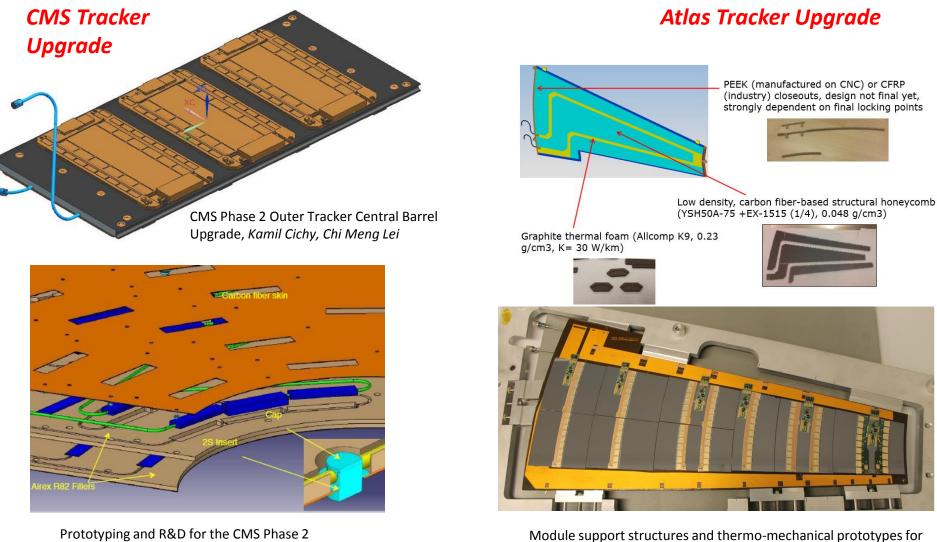
High-conductivity carbon-fibre/ polymer skins

LHCb UT

Thermal foam core component

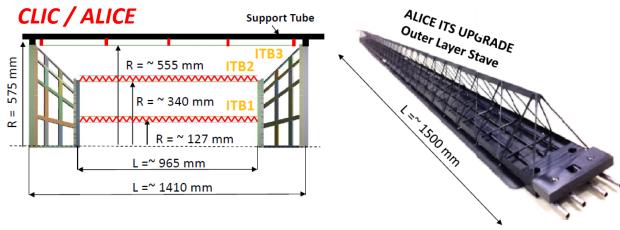
- Allcomp K-9 carbon foam
- High thermal conductivity (~35 W/m.K), low mass density (0.2 g/cm³)
- Open cell foam
- Machinability is good

Ideal for spreading the heat transfer from a small tube to the large area required to cool the ASICs and sensors.

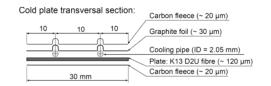

The machining of the foam is easy and the resulting surface can be made clean for epoxy.

EP-DT Detector Technologies

Staves and Disks

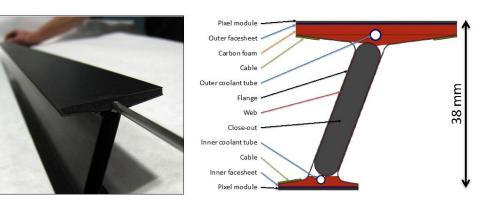


Prototyping and R&D for the CMS Phase 2 Outer Tracker End Caps, Andreas Mussgiller



EP-DT Detector Technologies the endcap of the ATLAS strips tracker, Sergio Díez Cornell

Long structures – more 3D



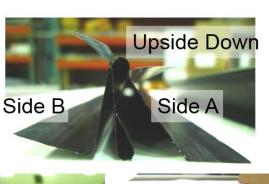
ALICE ITS UPGRADE

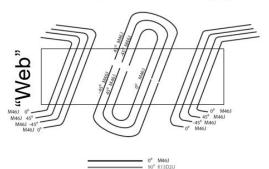
- Total Radiation length: ~1% X₀ (per layer)
- Room operational temperature
- Max. sag < 100 μ m

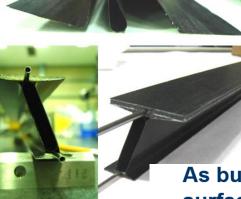
Developments on the mechanics and cooling for the CLIC tracking detectors, *Szymon Sroka*

A Verified Thermo-Mechanical Prototype and Model for Integrated Local Supports in the ATLAS ITk Pixel Detector Upgrade, *Neal Hartman*

EP-DT Detector Technologies ATLAS Upgrade Pixels

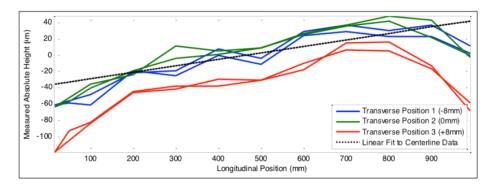

Manufacture to high final precision


The Ibeam



of the beam.

Side "A" Side "B'



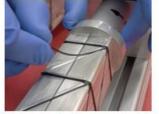
A Verified Thermo-Mechanical Prototype and Model for Integrated Local Supports in the ATLAS ITk Pixel Detector Upgrade, *Neal Hartman*

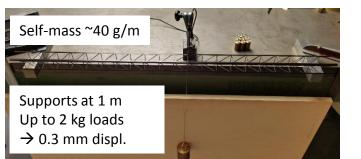
90° K13D2L

EP-DT Detector Technologies

Further long structure alternatives

Lightweight support structures and thermal management materials for silicon tracker detectors featuring tilted modules, *Diego Alvarez Feito*


ATLAS ITK, etc.


0. Fibre Pre-impregnation

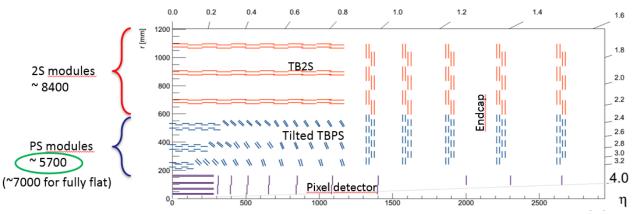
1. Winding 90° rings

2. Placement of cross-members

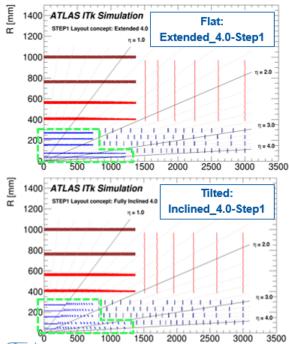
3. Placement of longitudinal reinforcements

5. Closure of mould

4. Placement of corner L-sections (UD prepreg)



6. Co-curing (internal pressure via inflatable pipe)


EP-DT Detector Technologies

Tilted geometry

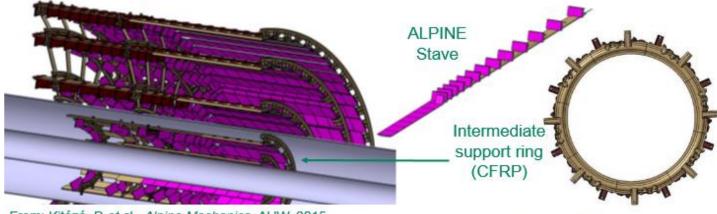
CMS Tracker Upgrade

CMS Phase 2 Outer Tracker Central Barrel Upgrade, *Kamil Cichy*

ATLAS Tracker Upgrade

ATLAS ITK*: Pixel Barrel (ONLY)									
Layer		n Area 1²)	Services (Kg)						
	Flat	Tilted	Flat	Tilted					
0	2	1.2	2.87	2.00					
1		1.2	3.08	2.21					
2	3.8	2.6	2.20	1.96					
3		0 2.0	1.95	2.11					
4	2.7	2.7 2.2		2.60					
Total	8.5	6.0	12.50	10.88					

*Results shown ONLY include the Pixel Barrel, and are based on preliminary estimates by <u>D.Giugni & P.Morettini</u>

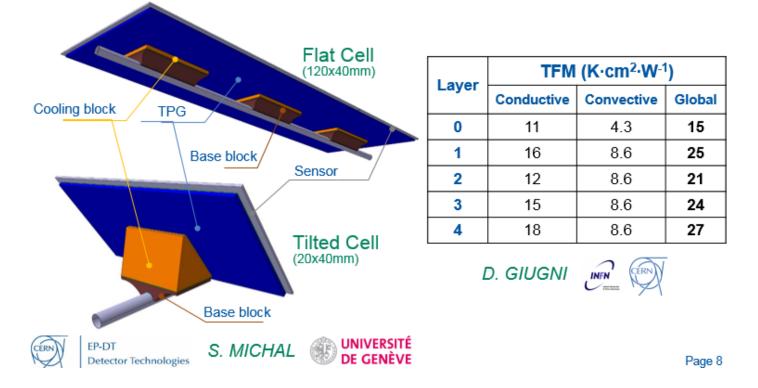

> Lightweight support structures and thermal management materials for silicon tracker detectors featuring tilted modules, *Diego Alvarez Feito*

Tilted geometries

Mechanical Implementation: ATLAS Pixel ALPINE

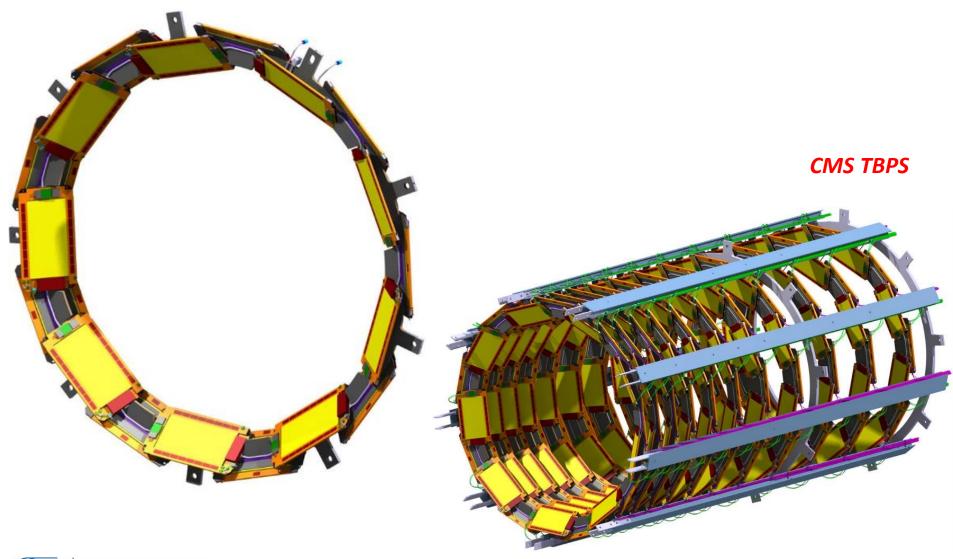
- Support Structure: CFRP Staves + Intermediate rings
- Heat management of tilted cells: Carbon foam "mountains"

From: Kitézé ,D.et al., Alpine Mechanics, AUW, 2015.

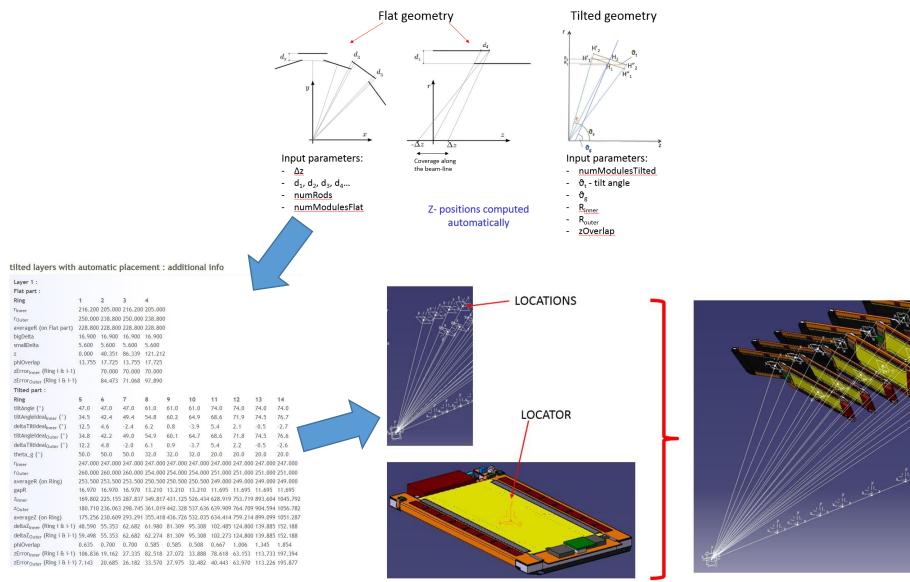

Tilted geometries

Mechanical Implementation: ATLAS Pixel SLIM

- Heat management: Module Cells (Modularity)
 - <u>Base block</u> with positioning pins soldered to CL
 - Bonded <u>cooling block</u> (phase-change material + <u>glue dots</u>)

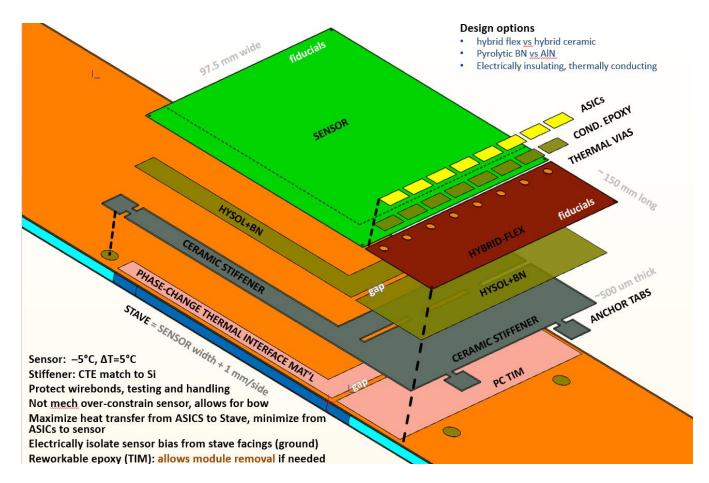

Material tailored for TFM needs (e.g. Al-Carbon Al-Diamond)

TPG backing plate + loaded epoxy interfaces



Tilted geometries

From physics layout model to 3D CAD

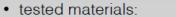

CMS Phase 2 Outer Tracker Central Barrel Upgrade, Kamil Cichy

EP-DT Detector Technologies

Module mounted with phase-change adhesive

LHCb UT

Mechanics and Construction of the LHCb Upstream Tracker Detector, Ray Mountain



EP-DT Detector Technologies

Phase-change Thermal Interface Materials

Manufacturer	Glue	Thickness [mm]	Thermal conductivity [W/m/K]	phase change or burn-in temp.	Density [g/cc]	Operation range	Comment
Laird Technologies	Tpcm 905C	0.130	0.7	5 min @ 70°C	1.31	-25°C to +70°C	film
Laird Technologies	Tpcm 910	0.250	2.23	5 min @ 70°C	1.39	-25°C to +70°C	film
Laird Technologies	Tpcm 920	0.510	2.23	5 min @ 70°C	1.39	-25°C to +70°C	film
Laird Technologies	Tpcm 780SP		5.4	45°C to 70°C	2.48		printable paste
Laird Technologies	Tpcm 780	0.203 / 0.254 / 0.406 / 0.635	5.4	45°C to 70°C	2.48		film
Loctite	Isostrate 2000	-	0.45	60°C	-		on Kapton substrate
Honeywell	PCM45F	0.254	2.35	45°C	-		pad or tape
Parker Chomerics	Thermflow T725	0.125	1.41	55°C	1.1	-55°C to +125°C	film
Parker Chomerics	Thermflow T557	0.125	7.7	45°C / 62°C	2.4	-55°C to +125°C	film
Parker Chomerics	Thermflow T777	0.115	7.7	45°C / 62°C	1.95	-55°C to +125°C	film
Amec Thermasol	MPC 315	0.13	5.0	45°C	-	-40°C to 125°C	film
3M	5515	0.200 / 0.250	3.0	-	2.9	-	pad

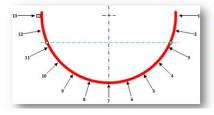
- - small thickness (< 0.150 mm)
 - low transition temperature (< ~60 °C)
 - minimum operation temperature < -35 °C
 - high thermal conductivity
 - · low density

T777

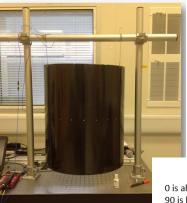
MPC 315

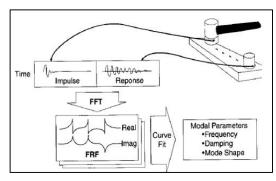
16

0


TIM handling and radiation resistance

Material	removal of first cover foil	stickness to glass	removal of second cover foil	number of trials
T777	very easy / easy / well	3 x well	2 x ok, tearing / well	2/2/1
T725	ok / easy / well / very easy	4 x well	4 x ok, tearing	2/1/1/1
T557	3 x easy / well	4 x well	4 x ok , some tearing	2/1/1/1
MPC315	easy / easy / well / very easy	well / well / well / well	ok / well / well / well	1/1/1/1
Material	softness of TIM after reheating	separability of glass plates	removal of TIM	residue
T777	very soft / very soft / gum	2 x hard / easy	very easy / very easy / ok	3 x no
T725	quite soft / very soft / gum / very soft	2 x easy / 2 x very easy	3 x hard / 1 x very hard	4 x sticky
T557	3 x soft / gum	2 x hard / 2 x easy	3 x ok / smeary	2 x sticky / 2 x no
MPC315	really soft / soft / plasticine / soft	easy / easy / easy / easy	very very easy / easy / easy / very easy	no / no / no / no
1. MPC315 2. T557 3. T777 4. T725 • handling bed	e ranking is as follows	-	FRP)	MPC315 T725 T777 T557
			€ 2 1.5 0.5	




Characterisation of structures in composite materials

- Hang ½ cylinder from frame at 2 locations
 - Chosen to lie on centre-of-gravity so structure hangs vertically
- Mark out hammer locations at halfheight at 15deg intervals
- Locate accelerometer at position 13

View: 3D View [Co BLK: ring_complet Fund: 175 Hz

Mode frequency comparisons 0 is along the centreline

90 is along the centre

U	Ν	I	۷	Ε	R	S	I	Т	Y	0	F	
I	Ι	ľ	1	E	R	Ŋ	P	()	C	I	,
	U I	LI	LIV	LIV	LIVE	LIVER	LIVERS	LIVERSI	LIVERPO	LIVERPO	LIVERPOC	LIVERPOOL

Layup	Layers	Thickness	Natura	l Frequency	/ mode nun	nber					
			1 st	2 nd	3 rd	4 th	5 th	Simulation or Test			
0,45,-45,90,90,-45,45,0	8	0.62	3.49	10.075	21.103	36.079	55.565	ANSYS			
0,40, 40,00,00, 40,40,0	Ū	0.02	3.25	11.25	22.50	38.50	58.75	TEST			
0,90,90,0,90,90,0	7	0.55	5.124	14.813	31.043	52.222	81.105	ANSYS			
0,50,50,0,50,50,0	,	0.55	5.00	14.50	31.20	52.75	81.50	TEST			
90,0,90,0,90,0,90	-	7	7	7	0.55	7.105	20.540	43.043	60.581	112.45	ANSYS
90,0,90,0,90,0,90	,	0.55	6.84	19.92	42.77	73.24	111.3	TEST			
90,60,-60,0,-60,60,90	7	0.55	7.706	22.272	38.505	39.427	91.977	ANSYS			
90,00,-00,0,-00,00,90	,	0.55	7.42	21.68	46.09	79.30	123.0	TEST			
90,45,-45,0,0,-45,45,90	8	8	9	8	0.62	7.930	22.926	48.035	68.514	125.50	ANSYS
56,15, 15,6,6,6, 15,15,55	Ū	0.02	7.75	22.50	48.25	82.75	126.0	TEST			
100GPa generic material comparison	1	0.55	5.533	15.997	33.525	57.433	87.606	ANSYS			
100GPa generic material comparison	1	0.62	6.237	18.032	37.788	64.737	98.747	ANSYS			

The ATLAS Phase-II Upgrade Endcap Pixel Detector Support Structures, *J.Pater & P.Sutcliffe*

Laser doppler vibratometry

Vibration issues on particle detector components during transport and in operation – Experimental approach, *Michael Guinchard*

85,9

150

175

289

298

EP-DT Detector Technologies

1,89

0.05

0.56

0.29

0.57

55,6

111

195

277

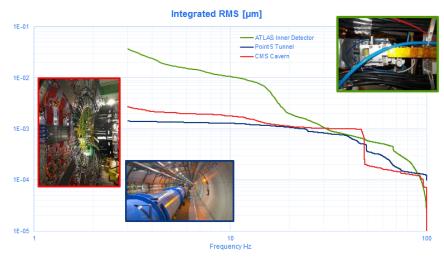
296

0,78

1,12

1,11

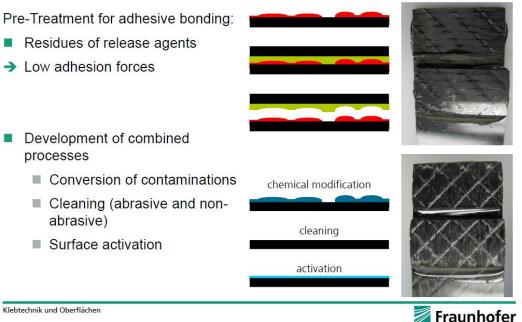
0.97


0,69

Better understanding of vibration loads

Vibration issues on particle detector components during transport and in operation – Experimental approach, *Michael Guinchard*

Overview from measurements done during LHC installation								
Excitation sources	Acceleration level	Frequency range						
Road transport without absorbers	around 0,5 g	Broadband (shock)						
Road transport with absorbers	around 0,05 g	Broadband (shock)						
Road transport : trailer suspension	around 0.2 g	Single frequency around 3 Hz						
Lifting in the pit	around 0,1 g	Single frequency around few						
Emergency stop in the pit	around 0,1 g	Hz depending the depth						
Earthquake	see the graph	Low frequency excitation						
Cavern excitation	see the graph	Broadband						


Excitation sources – Ground motion ATLAS Inner Detector – EDMS 1403119

Continuous "ground" vibration at 3 Hz with 0.1 um amplitude measured inside Atlas detector

Preparing CFRPs for adhesive bonding

© Fraunhofer IFAM

IFAM

23

Water Contact

Angle [°]

102

96

80

76

Increasing use of thermoplastic matrices

Surface Energy

source :https://www.accudynetest.com/polytable_03.html?sortby=number%20ASC

variation of wetting properties of matrix-polymers

[mN/m]

31

32

38

45

surface energies (untreated)

Polymer

PP

PE

PPS

Epoxy

Methods

Pretreatment of CFRP for improved adhesive bonding performance, *Joerg Ihde / Fraunhofer institute*

Technologies and Fields of Application

PRE-TREATMENT OF CFRP -

MECHANICAL ACTIVATION

GRINDING

- removal of contamination and substrate material
- manually or automatically
- Hard particles or fibers as abrasive
- formation of dust / particles
- Release of fibers / deterioration of substrate
- Pre- and Post-Cleaning with organic solvents needed

Manual grinding with abrasive paper and solvent cleaning is the actual process for CFRP pre-treatment in aircraft and wind power industry.

Klebtechnik und Oberflächen

Technologies: Low pressure plasma

- Atmospheric pressure plasma
- VUV-excimer technology
- Laser surface treatment
- Blasting. CO₂-Snow, VacuBlast
- Flame treatment
- Bath processes (e.g. ultrasonic)

Applications:

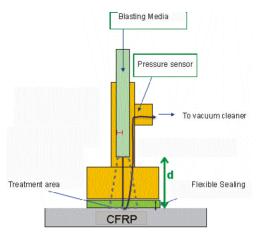
- Cleaning and activation
- Functional coatings

Klebtechnik und Oberflächen

© Fraunhofer IFAM

Fraunhofer

IFAM



EP-DT Detector Technologies

Vacuum blasting

Principle:

- Industrial vacuum cleaner is used to generate a reduced pressure in the treatment chamber
- Blasting media is injected by the pressure differences
- The reduced pressure prevents the emission of blasting media and dust

Klebtechnik und Oberflächen

© Fraunhofer IFAM

Fraunhofer

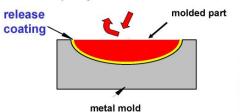
Advantages:

- Emission-free cleaning methode
- moderate noise emission
- Automated and manual use possible
- Line, local and area treatment

Disadvantages:

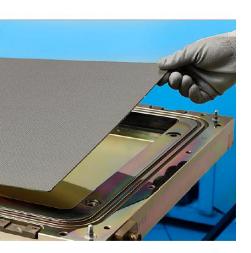
Limited usability for complex shapes

EP-DT Detector Technologies


Or avoid surface treatment completely?

Hydrophobic Coatings

1. Permanent Release Layers


Plasma polymer coatings for the substitution of release agents

- process cost & effort
- cost & effort for surface cleaning
- quality controll

Klebtechnik und Oberflächen

© Fraunhofer IFAM

Fraunhofer

Flexible Release Film for CFRP Production

Thermoset Materials

- Direct release with filn
- No transfer of release agent
- Mechanical Protection by film
- Combination with In-Mould:
 - Paints
 - Function Coatings
 -

Klebtechnik und Oberflächen

© Fraunhofer IFAM

Fraunhofer

New applications for CFRPs

Carbon Fibre Reinforced Polymers in High-End Applications – Potentials and Limitations, *Fabian Preller, INVENT GmbH*

INVENT

High Thermal Conductivity Applications

Example: Thermal link made of CFRP

Material	Density ρ	Thermal Conductivity α	Ratio ρ/α
Aluminium	2 770 kg/m ³	~ 160 W/mK	17.3 kgK/Wm ²
Copper	8 867 kg/m ³	~ 400 W/mK	22.2 kgK/Wm ²
Carbon Fibre*	2 200 kg/m ³	800 W/mK	2.8 kgK/Wm ²

* pitch-based ultra high modulus (UHM) carbon fibre Mitsubishi K13D2U

© 2016 INVENT GmbH

EP-DT Detector Technologies

New applications for CFRPs

Carbon Fibre Reinforced Polymers in High-End Applications – Potentials and Limitations, *Fabian Preller, INVENT GmbH*

Electrical Conductivity Applications

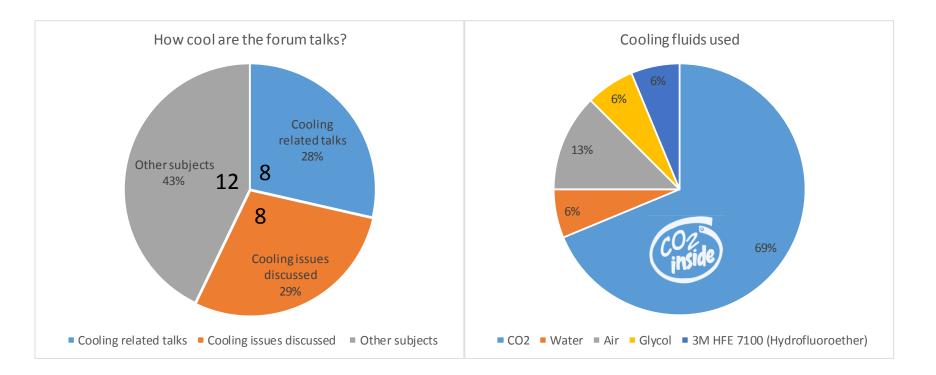
Example: Heating of moulds

- Mould for composite parts is made of composite itself
 - A CFRP layer is used as heating element
- Parts with large dimensions, complex shapes, e.g. boats or wind turbine blades
- Temperatures of the mould up to 150°C
- Easy and precise adjusting of temperature
- Little heating power required (500 W / m²)
- Fast cooling down caused by low heating capacity of the mould itself
- Efficient manufacturing of moulds


```
@ 2016 INVENT GmbH
```

Pictures: Fibretemp

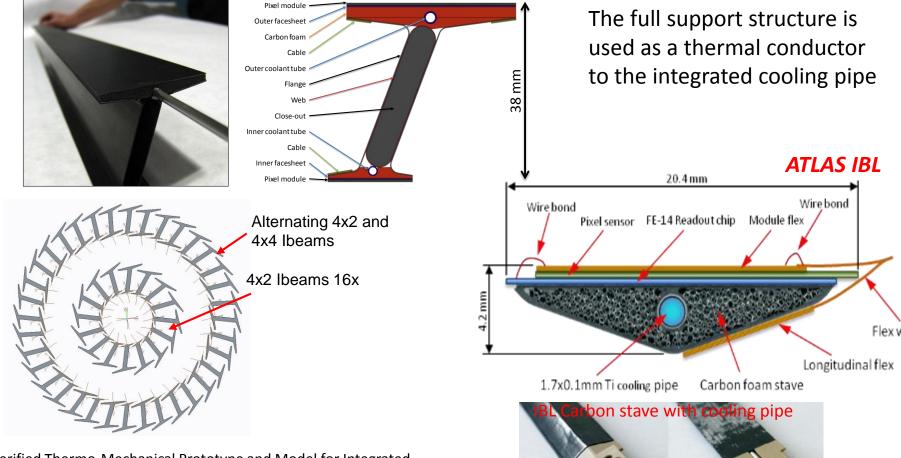
INVENT



EP-DT Detector Technologies

Highlights on Cooling

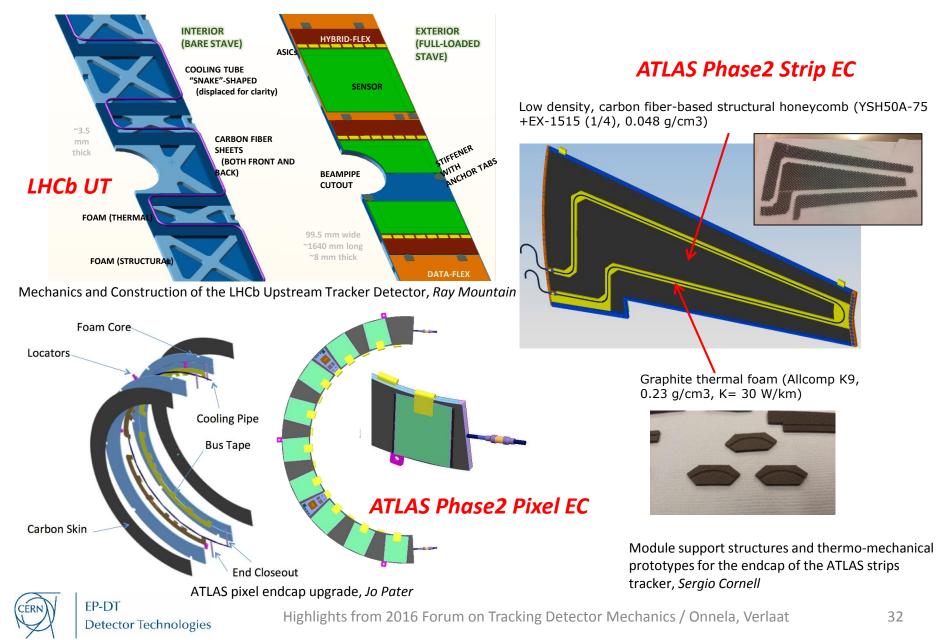
Cool talks at the forum


The average cooling temperature of the presented talks: -16.3°C

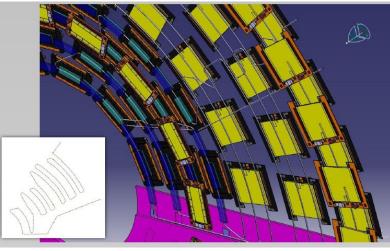
EP-DT Detector Technologies

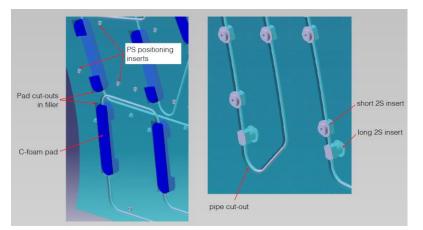
Thermal/mechanical integrated structures (1)

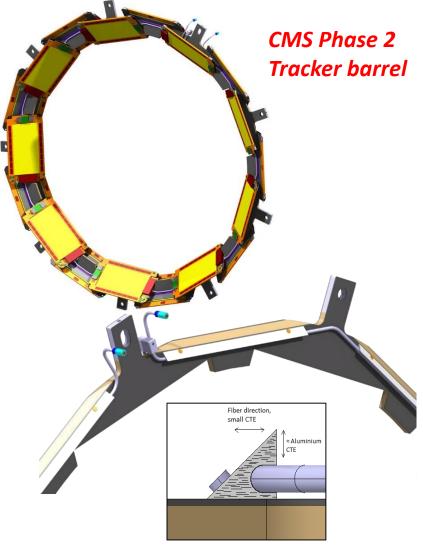
ATLAS Phase2 Pixel



A Verified Thermo-Mechanical Prototype and Model for Integrated Local Supports in the ATLAS ITk Pixel Detector Upgrade, *Neil Hartman*

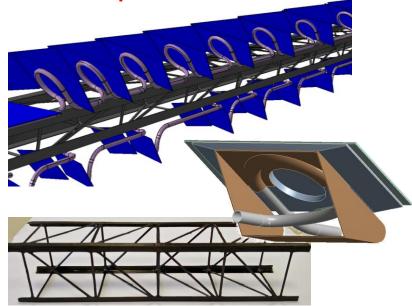

Commissioning and operational experience of the ATLAS IBL CO2 cooling system, *Bart Verlaat, CERN*


Thermal/ Mechanical integrated structures (2)


Partial separation of cooling and structure

CMS Phase 2 Tracker EC

Prototyping and R&D for the CMS Phase 2 Outer Tracker End Caps, Andreas Mussgiller

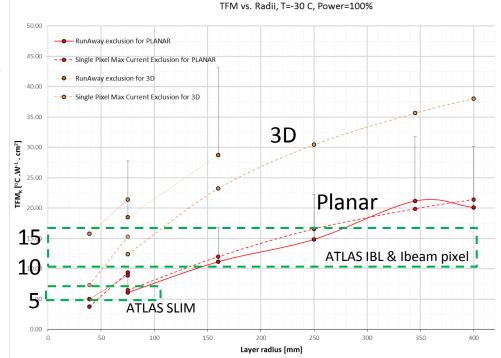


CMS Phase 2 Outer Tracker Central Barrel Upgrade, Kamil Cichy

Full separation of cooling and structure (Bring the tube to the sensor, it is a CO₂ cooling pipe after all)

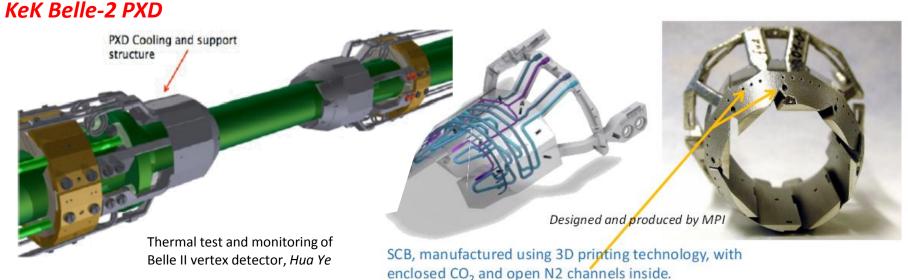
ATLAS Phase2 Pixel SLIM concept

Lightweight support structures and thermal management materials for silicon tracker detectors featuring tilted modules, *Diego Alvarez Feito*

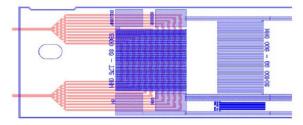

Backing Material	Conductive TFM (°C·W ⁻¹ ·cm ⁻²)	Mass* (g)
Al-Diamond	5.2	3.0
Iso-graphite	7.0	2.5

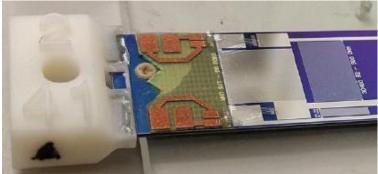
ATLAS Phase2 Pixel

		TFM [K cm ² W ⁻¹]					
I-Beam side	CO_2 [C]	NTC default		CO ₂ [C] NTC default IR ca		IR ca	mera
Wide	-19.5	16.8 0.7		11.7	0.7		
Narrow	-19.5	11.2	0.9	10.4	1.0		


ATLAS IBL TFoM=13 K*cm²*W⁻¹

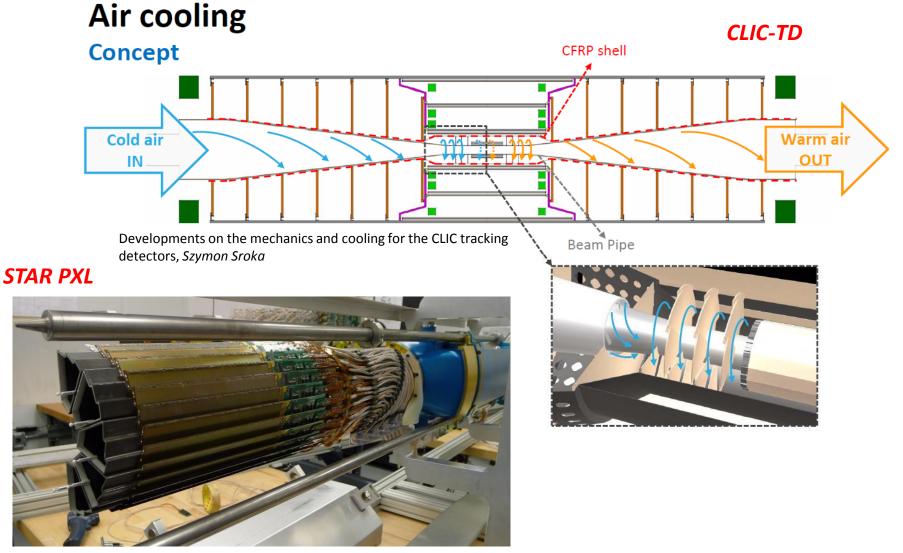
EP-DT


Alternative cooling solutions



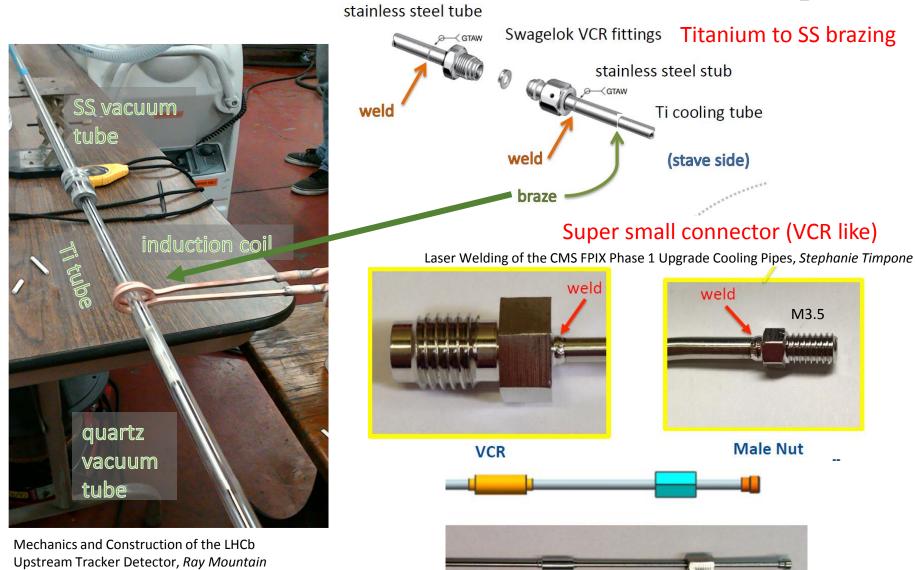
AIDA-2020 Depfet

Micro-channel cooling for silicon detectors, Miguel-Angel Villarejo Bermudez



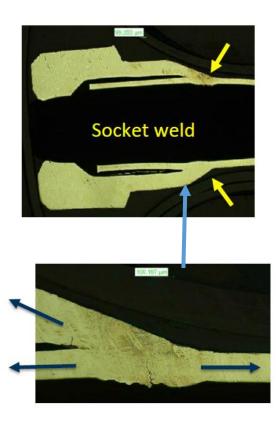
~ 2.5 cm Detector Technologies

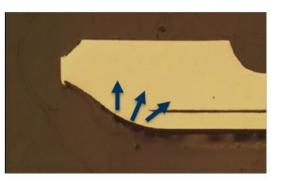
TIGUINGULS NOM 2016 Forum on Tracking Detector Mechanics / Onnela, Verlaat

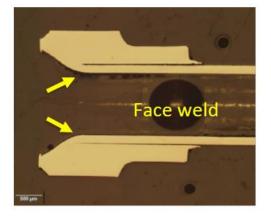

Air cooling solutions for low power CMOS, MAPS and Depfet sensors

The STAR PXL detector cooling system, Eric Anderssen

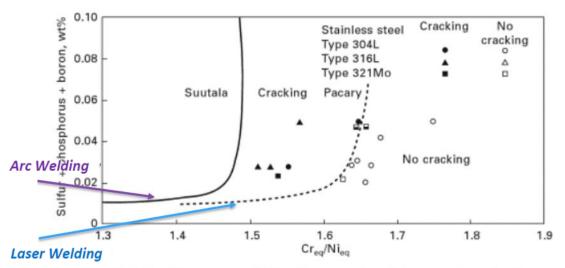
Reliable cooling connections for high pressure CO₂



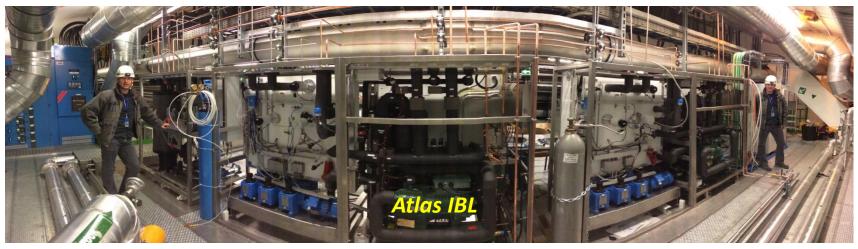



Welding SS tubes

A very nice material science lesson by Stephanie Timpone about hot cracking

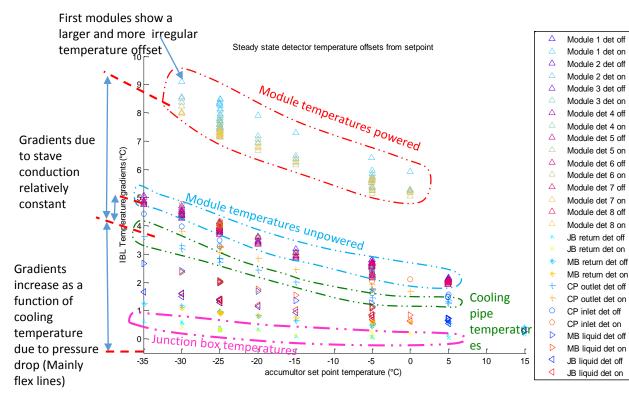

Both samples taken from a HD assembly that passed hydrostatic pressure testing at 157 bar for 1 hour

Laser Welding of the CMS FPIX Phase 1 Upgrade Cooling Pipes, Stephanie Timpone

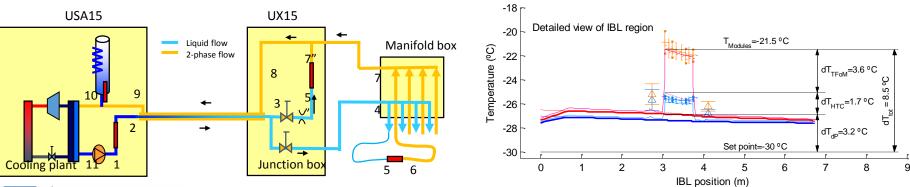

1.12 Cracking susceptibility diagram of stainless steels under laser beam processing conditions.

CO₂ Cooling system commissioning

The CMS PIXEL Phase 1 CO2 cooling system: Commissioning and operation of a large scale CO2, Jerome Daguin

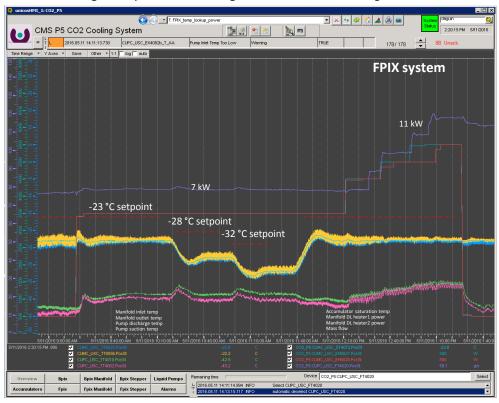


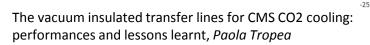
Commissioning and operational experience of the ATLAS IBL CO2 cooling system, Bart Verlaat

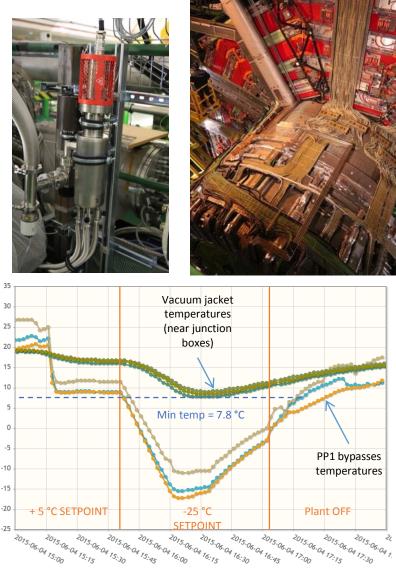


EP-DT Detector Technologies

ATLAS IBL cooling results

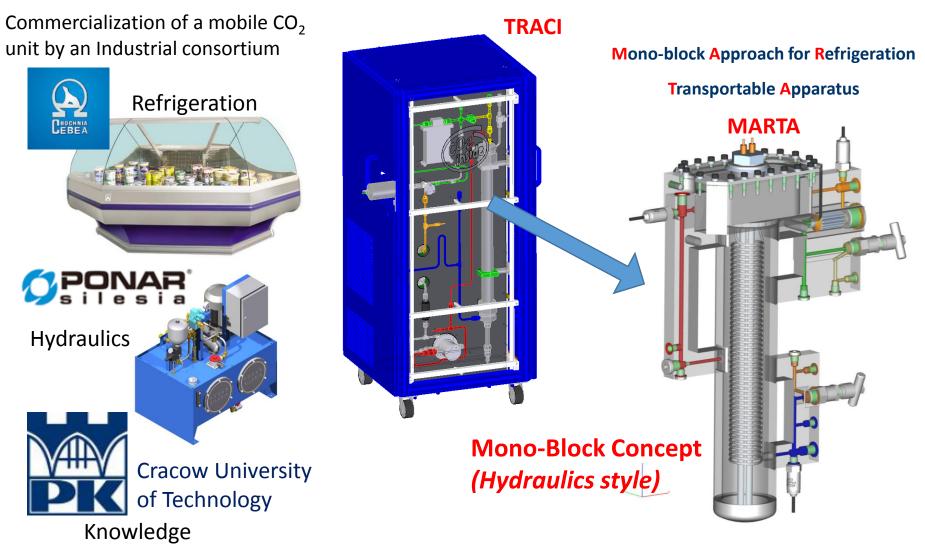



EP-DT Detector Technologies


CMS-Pixel Cooling results

The CMS PIXEL Phase 1 CO2 cooling system: Commissioning and operation of a large scale CO2, *Jerome Daguin*

First large CO2 cooling system (11 kW)


Date

EP-DT Detector Technologies

Mobile CO₂ unit development

Transportable Refrigeration Apparatus for CO₂ Investigation

Summary

- The Forum on Tracking Detector Mechanics 2016 held in Bonn was a success
- Lots of interesting talks related to mechanics and thermal challenges were presented
- We would like to thanks the organizers of the forum for the perfect organization.

Questions?

