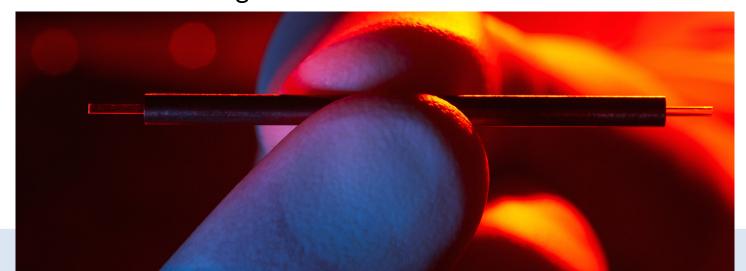


u. dorda Eupraxia yearly meeting 27. io. 2016, paris

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

Reminder WP10

- Task: monitor alternative novel technologies and evaluate their applicability to EuPRAXIA
 - Fiber laser
 - Dielectric acceleration
 - As alternative injector
 - As 'competition'
- Non-EU funded WP
 - 4 persons participating in meetings
 - Guoxing Xia (WP leader)
 - Ulrich Dorda (WP leader)
 - Barbara Marchetti
 - Andreas Walker
 - Few % only, so help and any hints are very welcome!


Dielectrics

- Part of our normal job, eg. AXSIS, ACHIP, ...
 - We have a good understanding of the worldwide efforts

• Todo:

- The next years will be an exciting time in the field with many experiments coming online
- Start to fill wiki
- Increase exchange between WP members

• So far:

- Learned about fiber laser
 - The laser technology (incl. combination technologies)
 - it's application in LPWA
- Gained overview over worldwide activities

• Todo:

- Continue monitoring, study papers,...
- Find best way to engange with the community, workshop?,....

Deliverables

- 31.03.2017: D10.1: Tests are performed to extract an ultra-cold electron bunch from an alternating current magneto-optical trap.
- 30.09.2018: D10.2: Simulation and experimental studies on acceleration in dielectric structures
- 30.04.2019: D10.3: Summary report on possible alternative injector concepts including an analyses of the compatibility with the project requirements and identification of possible technological bottle-necks
- 30.04.2019: D10.4: Report on state of the art in fibre optics lasers and related ongoing research
- 30.04.2019: D10.5.: A conceptual design of an accelerator based on dielectric structures, analyzing achievable beam parameters.