SINBAD & ATHENA

The ARD facility under construction at DESY & the proposal for a Helmholtz strategic investment in plasma acceleration

<u>U. Dorda</u> for the DESY MPY-1 group EuPRAXIA yearly meeting Paris, 28.10.2016

- SINBAD OVERVIEW
- 太XSIS
- 入RES
 - ARES LINAC
 - **ARES** EXPERIMENTS
- 入THEN入

SINBADS idea Where, who, why, when, what

• Turn the facilities of the old DORIS storage ring plus associated halls into a dedicated multi-purpose accelerator R&D facility with several, independent experiments from ultra-fast science and high gradient accelerator modules.

• Based e.g. on the ongoing LAOLA activities, it is intended to provide the space for long-term dedicated accelerator R&D with multiple experiments using a common infrastructure.

Project goals:

- Production of ultra-short electron bunches for ultra-fast science.
- Setup of an attosecond radiation source with advanced technology (AXSIS collaboration).
- ATHENAe: Construction of a plasma accelerator module with usable beam quality for applications.

Short **(**Nnovative Bunches and Accelerators at DESY

SINBAD at DESY, Hamburg - location

rn Styg

- In the old DORIS facilities
- Next to the central DESY control room
- Beam line to DESY II synchrotron (currently deactivated, but still installed)
- 290 m long, 5-9 m wide RP-shielded tunnel in racetrack shape
- 2 long straight sections of >70m length
- Central hall (650m2) + additional side rooms & cellars
- 1m thick shielding
- Multiple laser labs directly adjacent

- Removal of old DORIS beam line completed
- Removing of cabling & piping done
- Structural refurbishment finished
- Installation of technical infrastructure starting

from DORIS to SINBAD

SINBAD will initially host 2 experiments:

ARES

- "Accelerator Reseach Experiment at Sinbad"
- 1st step: Build A 100MeV electron linac for ultra-short bunches
 - Target: operational 2019
- 2nd step: Optimize performance and compare various compression techniques
- 3rd step: Use beam to inject into advanced acceleration concepts
 - DLA \rightarrow ACHIP
 - THz driven dielectric loaded waveguides
 - ATHENAe: External injection into plasma

AXSIS

- "Attosecond X-ray Science: Imaging and Spectroscopy"
- THz acceleration in dielectric loaded waveguides
- ICS for X-ray generation

SINBAD layout is chosen to allow future upgrades (e.g. ATHENAe) and has significant free space left in the tunnel!

Who: The MPY-1 TEAM

AXS1S

THz-laser acceleration in dielectric loaded waveguides

AXSIS

- Collaboration of 4 PIs: F. Kaertner, R. Assmann, P. Fromme, H. Chapman
- funded by an ERC-synergy grant
- Using the TM01 mode in circular waveguides
- Phase-velocity is reduced by dielectric loading
- Separate THz-gun test stand starting up
- Target parameters:
 - ≈ 200MeV/m, f = 300GHz
 - E: 15 / 25 MeV (4 &12keV photons)
 - Q: 0.1 3pC
 - T: fsingle fs.
 - kHz rep rate

<u>Accelerator Research Experiment at Sinbad:</u> Electron linac for ultrashort bunches for advanced acceleration schemes

ARES-linac Electron linac for ultrashort bunches

ARES-linac

- \rightarrow Charge: 0.5-20 pC (up to 1nC)
- → Energy ~ 100 MeV
- \rightarrow Bunch length: few fs / sub-fs
- \rightarrow Transverse norm. emittance < 0.5 mm*mrad
- \rightarrow Arrival time jitter stability < 10 fs RMS

COMPARISSON OF COMPRESSION TECHNIQUES

The linac will allow to directly compare different bunch compression techniques

Pro: very good transverse emittance, no CSR, no charge loss, small spot size at the exit

Contra: tight phase tolerances on the RF compressor, long. non-linearity

And a hybrid version of the two...

magnetic "compression" 3.28 m 0.22 m 0.6 m 1.2 m R₅₆~ -10 mm 4.67° 0.61 fs (rms) 1.0 0.5 [⊗] 0.0 ŝ -0.5 -1.04 -4 -2 2 dt (fs)

Pro: high current & short beam (non-linearity cut out), distributed RF phase tolerances **Contra**: charge loss

	VB (Velocity Bunching)	MC (Magnetic Compression)	VB+MC	
Q final [pC]	0.5	0.7	2.7	
Q initial [pC]	0.5	20	10	
t _{RMS} [fs]	2.486	0.21 (0.27)	0.66 (0.87)	
t _{FWHM} [fs]	4.1	0.14 (0.29)	1.53 (1.42)	
E [MeV]	110.9	100.2 (100.2)	101.6 (101.8)	
ΔΕ/Ε	0.3%	0.20% (0.18%)	0.18% (0.16%)	
x _{RMS} [mm]	0.009	0.058 (0.057)	0.084 (0.083)	
y _{RMS} [mm]	0.009	0.059 (0.058)	0.092 (0.088)	
nε _x [μm]	0.054	0.068 (0.072)	0.19 (0.21)	
nε _y [μm]	0.054	0.063 (0.065)	0.16 (0.15)	
Peak current I [A]*	57	953 (759)	1173 (879)	
Local peak current I _L [A]**	85	2390 (1487)	1432 (1358)	
B [A/m ²]***	1.97 * 10 ¹⁶	2.13 (1.63) * 10 ¹⁷	3.74 (2.71) * 10 ¹⁶	

*Peak current:
$$I = \frac{Q_{tot}}{3.5t_{RMS}}$$

**Local peak current:
$$I_L = \frac{Q_{tot}}{t_{FWHM}}$$

*** Brightness:
$$B = \frac{I}{n\varepsilon_x n\varepsilon_y}$$

ARES - linac & infrastructure

Integration of the linac in the SINBAD tunnel

Tolerances

Jitter source	Unit	Sensitivity for 10-fs timing jitter			RMS tolerance		
		0.7 pC MC	2.7 pC VB+MC	0.5 pC VB	0.7 pC MC	2.7 pC VB+MC	0.5 pC VB
Laser-to-RF	fs	42437.1	159.8	125.1	200.0	50.0	50.0
Gun charge	%	5.8	301.6	1010.1	1.0	4.0	4.0
Gun phase	deg	1.75	0.61	0.49	0.06	0.06	0.06
Gun voltage	%	0.61	0.72	0.40	0.06	0.06	0.06
TWS1 phase	deg	0.021	0.011	0.0098	0.013	0.009	0.009
TWS2 phase	deg	0.022	0.13	4.21	0.013	0.011	0.011
TWS1 voltage	%	0.055	0.073	0.10	0.013	0.009	0.009
TWS2 voltage	%	0.064	0.040	1.2	0.013	0.011	0.011
BC B-field	%	0.030	0.030	١	0.01	0.01	0.01
	fs	١	١	١	9.98	9.72	10.24

Technical "details" will decide on success: Water cooling, LLRF, EMI, ...

- Target time line:
 - > First beam from gun end 2017
 - First beam from linac 2018
 - > Available for experiments mid 2019
 - $> \rightarrow$ Depending to a large extend on X-FEL
- Access will be possible via ARIES transnational access!

ARESexperiments Injection into

advanced acceleration schemes

TOWARDS HIGHER FREQUENCIES -> LASERS!

- No klystrons for high frequencies! → Use particle bunches or laser pulses as drivers.
- Material limitations → dielectric materials, plasma cavities, ...

Two main directions:

1 Microstructure Accelerator

Laser- or beam driven Vacuum accelerators 'Conventional' field design 2 Plasma Accelerator

> Laser- or beam driven Dynamic Plasma Structure Plasma field calculations

\rightarrow Use ARES-linac as injector & to probe the acceptance

SINBAD-ARES linac - general philosophy for future experiments

• Who will be the "users" of the SINBAD linac?

Experiments involving Novel High Gradient Acceleration Techniques: e.g. LPWA, Dielectric Wake-Field Acceleration, THz laser acceleration in dielectric-loaded structures...

What types of e-beam will such experiments need?

• Ultra-high stability → synchronization

•

- Small transverse focus (tens of μm few μm)
- generation The e-bunch duration has to be tuned
- The **e-bunch duration has to be tuned**, according to the requirements for the production of radiation.

- On the long run, we aim for multiple research beam lines
 - Keeping option to add a beam line into the hall in the far future
- Envisaged topics:
 - Laser plasma wake field acceleration with external injection and demo-FEL
 - Extent depending on approval of the ATHENA proposal
 - Laser driven dielectric structures
 - Laser labs of I. Hartl and F. Kaertner adjacent
 - Imaging beam line (ICS)
 - Comparing conventional beams to LPWA, depending on approval of the ATHENA proposal
 Beam diagnostic test stand, ...
 - Relying/ planning on strong collaborations
 - Current: LAOLA, AXSIS, ACHIP, EuroNNAC, EuPRAXIA, ARIES, ...
 - Hope for: ATHENA,

ARES - STAGE 2: EXPERIMENTS

> 3 DESY groups are involved in ACHIP

Accelerator on a Chip International Program

- > I. Hartl \rightarrow Lasers
- > F. Kaertner \rightarrow Lasers, experiments,...
- > MPY-1 \rightarrow Simulations & access to ARES-linac
- > AXSIS @ ARES to test acceleration only (THz guns are tricky...)
- > ARES will be an ideal injector for relativistic acceleration tests

Simulated injection into a 300GHz dielectric structure

ATHENA

A collaborative proposal for Helmholtz strategic investment funds

ATHENA - PROPOSAL

- Joint <u>request</u> of 7 Helmholtz centers for Helmholtz strategic investment funds
- "ATHENA provides the infrastructure required for bringing compact and cost-effective plasma accelerators to user readiness. Flagship projects will be set up in Hamburg (electrons) and Dresden (hadrons). Applications for science, medicine and industry will be developed in all centers."
- ATHENAe flagship would be hosted at **SINBAD**.
- Total request 30ME/4years
- Submission done, waiting for decision
 - reviewed with result 'outstanding'
 - novel, compact accelerators are one of the top 7 priorities of the agenda of the Helmholtz president

Ulrich

 Would add a plasma stage and allow upgrading the linac with e.g. X-band RF systems, upgrade synchronization, add linac stage, ...

Athena is a Helmholtz-initiative, but we will strongly rrely on our partners, e.g. UHH

150TW

iZDi

Draco PW

SINBAD as host to ATHENA

One of the 2 flag-ship projects

٠

- ٠ Relying on collaboration with **ATHENA & LAOLA** partners
- Substantial extension ٠ of the **SINBAD-ARES** linac
- Direct **comparison** of ٠ performances of conventional acceleration vs PWFA (internal + external injection).
- Pilot user experiments ٠ involving plasma based FEL

Direct **comparison** of performances of **conventional acceleration vs PWFA** (internal + external injection), both driven by lasers (baseline) and e-beams

Plasma injector to be later setup at KIT for injection into test storage ring

LINAC WORKING POINTS FOR INJECTION INTO ADVANCED

ACCELERATION SCHEMES

Matched ß functions range from cm to mm $(n\sim10^{14} \text{ to } n\sim10^{17})$. While for VB, the focusing is done along the linac, in case of a bunch compressor (BC), a focusing optics is needed

Example: Simulations at n =1017

Bunch length < 5 fs (small final energy spread)

	Plasma density [cm ⁻³]	10 ¹⁸	10 ¹⁷	10 ¹⁶	0.5×10 ¹⁶
	Skindepth, k_p^{-1} [μ m]	5.31	16.8	53.1	75.2
= t for FEL	Plasma wavelength, λ_p [μ m]	33.4	106	334	472
-	Injection beam energy [MeV]	a density $[cm^{-3}]$ 10^{18} 10^{17} depth, k_p^{-1} $[\mu m]$ 5.3116.8vavelength, λ_p $[\mu m]$ 33.4106beam energy $[MeV]$ 100100pulse duration [fs]2525ient (OSIRIS) $[GV/m]$ 627.58ng region, $\lambda_p/4$ $[\mu m]$ 8.3526.5V stage length $[m]$ 1.6×10^{-3} 13.2 × 10' stage length $[m]$ 16×10^{-3} 0.13atched β $[mm]$ 0.10.3	100	100	100
t for FEL been ATHENA	Laser pulse duration [fs]	25	25	25	25
	Field gradient (OSIRIS) [GV/m]	62	7.58	0.46	0.21
	Accelerating region, $\lambda_p/4 [\mu m]$	8.35	26.5	83.5	118
	200 MeV stage length [m]	1.6×10^{-3}	13.2×10^{-3}	0.22	0.48
	1 GeV stage length [m]	16×10^{-3}	0.13	2.2	4.8
	Matched β [mm]	0.1	0.3	1	1.5

Preliminary studies for a working point for FEL radiation generation in soft X-rays has been done by A. Maier in the context of the ATHENA proposal.

First simulations using the ARES beam

Simulations by Maria Weikum

SINBAD & ATHENA in one page

- SINBAD will be a dedicated accelerator R&D facility at DESY
- The SINBAD-ARES-linac is based on proven technology, trying to push the bunch length to a minimum & minimize the arrival time jitter.
- > Several experiments on dielectric acceleration are foreseen.
- ATHENA is a collaborative proposal for a Helmholtz investment. If approved SINBAD would host one flagship program allowing to upgrade the linac and add a plasma stage incl. Undulators.
- To some extend, access will be possible via the ARIES transnational access program.
- We strongly rely on our collaborators in LAOLA, EuPRAXIA, ATHENA, AXSIS, ARIES, ACHIP,... and the support of the DESY technical groups!

Backup slides Even more?

LAOLA Collaboration Hamburg

F. Grüner

A. Maier

- Initially: Laser-driven wakefields in REGAE. LUX exp. towards FEL
- Later: Move to SINBAD facility.

Beams:

- REGAE: 5 MeV, fC, 7 fs bunch length, 50 Hz
- FLASH: 1.25 GeV, 20 500 pC, 20 200 fs bunch length, 10 Hz. Beam-driven plasma wakefields. Beam-driven plasma wakefields with shaped beams and innovative injection methods. Helmholtz VI with UK collaboration.
- PITZ: 25 MeV, 100 pC, 20 ps bunch length, 10 Hz. Beam modulation experiment in a plasma cell, preparation to CERN experiment AWAKE
- SINBAD: dedicated R&D, multi purpose, 150 MeV, 0.01 – 3 pC, down to
 < 1 fs bunch length, pulse rate 10 – 1000 Hz
 Home of AXSIS ERC Synergy Grant
 Home of ATHENA

R. Aßmann

U. Dorda

B. Marchetti

F. Stephan

FLASHForward

J. Osterhoff

Beam compression along the dogleg with partial RF phase jitter compensation

• Basic idea:

compressing the e-bunch via VB+MC while compensating the arrival time jitter caused by the phase jitter in TW1 at the dogleg exit.

- Analytical approach proposed in: R. Brinkmann, Ideenmarkt Beschleuniger Seminar, DESY 2012.
- Developed a semi-analytical approach to study the best working point at ARES: B. Marchetti et al. <u>doi:10.1016/j.nima.2016.03.041</u>

