Status of EvtGen: general & LHCb

John Back
University of Warwick
7th June 2016
on behalf of the EvtGen Warwick team & LHCb sim group
Introduction

• Software tool to simulate B and D decays
 – Used by range of experiments (ATLAS, Belle2, CMS, LHCb, ...)
 – Created by A Ryd and D Lange; now maintained by Warwick team

• Wide range of decay models
 – Amplitudes based on helicity formalism; CP violation (mixing)
 – Takes into account spin/angular correlations; coherent/incoherent production

• Sequential particle decays
 – Specified using text (or xml) decay files
 – Decay probabilities: accept/reject method for each node in decay chain
 – Kinematics generally assume resonances are relativistic BW
 – Dalitz plots use isobar model for BWs, not K-matrix

• External package features
 – HepMC: For writing events in HepMC format (mandatory)
 – Photos++: FSR γ (optional)
 – Pythia8: Generic decays that have no specific EvtGen model (optional)
 – Tauola++: tau decays (optional)
Code Maintenance

• EvtGen master svn repository hosted at CERN
 – Current tagged version is 1.6.0 (released 1st June 2016)
 – Guest read access at \url{http://svn.cern.ch/guest/evtgen}
 – Example build script, examples and validation code provided
 – Kept up-to-date with changes in external packages (e.g. Photos++)
 – Critical bug fixes/collection of smaller changes \Rightarrow new tag every \sim6 months
 – New versions announced via \texttt{announce@evtgen.warwick.ac.uk} email list
 • Should contain MC contacts from all known experiments, as far as we know

• Dev team are LHCb collaboration members
 – LHCb uses its own version of EvtGen, manually “synched” with master repository, maintained by Warwick team
 – Continually incorporating bug fixes/new models: LHCb \leftrightarrow master
 • There are some minor technical differences, but they use the same physics models

• Dev team email address: \texttt{dev@evtgen.warwick.ac.uk}
 – Bug fixes/new useful models from users are added to master repository
 – Warwick hosted web-page: \url{http://evtgen.warwick.ac.uk}
LHCb Integration

• EvtGen is a core part of the Gauss simulation software suite
 – Monte Carlo production for LHCb

• New models/bug fixes added after internal review process:
 – Presentation of decay model/bug fix (physics & code requirements) at Gauss simulation (vidyo) meetings
 – Code then added/changed in LHCb svn repository once approved
 • Progress tracked using Cern JIRA web-tracking tools
 – New/updated models ⇒ new Gauss release
 – New LHCb code then added to Warwick svn master version

• EvtGenExtras package used for models with external dependencies:
 – MINT, used for 4-body D decay modes
 – Gnu Scientific Library used for some $B \rightarrow K^\ast \ell\ell$ factorisation form factors
 – Models with MC biasing, e.g. flat angular distributions for $B \rightarrow h h \mu \mu$

• EvtGen also used for c-baryon, b-baryon and B_c modes
 – phase-space generation only
Developments over past year

• New/updated physics models, mainly from LHCb:
 – Complete mixing phenomenology of $B_s \rightarrow$ vector γ (IFIC Valencia LHCb group)
 – $K_s^0 \rightarrow \pi^0 \mu^+ \mu^-$, using JHEP08 (1998)004 (V Chobanova, DM Santos, J Dalseno; LHCb)
 – $B_c \rightarrow$ scalar $\ell \nu$, $B_c \rightarrow$ tensor $\ell \nu$ (J Wimberley, LHCb)
 – Updates for rare $\Lambda_b \rightarrow \Lambda^{(*)} \ell \ell$ (Warwick LHCb group)
 – $B \rightarrow 4$ leptons, e.g. $B^- \rightarrow \mu^+ \mu^- \text{anti-}\nu_\mu \mu^-$ (N Nikitin)
 – Extended HQET form factors for semi-tauonic decays (B Hamilton, LHCb)

• Added Mersenne-Twister Random Number Generator (RNG)
 – Enabled if configure script detects c++11-feature compiler (e.g. gcc 4.7)
 – Stdlib RNG removed; resonance ordering affected generated phase space (!)
 – Simple RNG kept; no biases seen for kinematics (particle ordering)

• Various issues resolved:
 – Bug fixes, mainly from LHCb “JIRA” web bug-tracking reports
 – Incorrect spinor algebra for $S_1 \rightarrow \frac{1}{2} S_2$, $\frac{1}{2} \rightarrow S_3 S_4$; EvtDiracParticle helicity rotations
 – Fixed some $b \rightarrow s \ell \ell$ form factor poles, particularly for e^\pm modes (Warwick LHCb)
 – Photos++ changes in v3.60 caused problems for EvtGen (HepMC event issues)
 • Fixed in v3.61 after working closely with Photos developers ~2 weeks
\[B_{(s)} \rightarrow V \gamma \]

C Remon Alepuz et al, IFIC Valencia LHCb group

- New EvtSVPHelICPMix model for mixing-induced CP violation from interfering time-dependent amplitudes

![Graph showing t distributions assuming different helicity amplitude mag and phase coefficients](image-url)
Wrong angular distribution for spin- \(\frac{1}{2} \) anti-particles appearing as both daughter and parent: \(S_1 \rightarrow \frac{1}{2} S_2, \frac{1}{2} \rightarrow S_3 S_4 \)

\(\mathcal{P} = 0 \) if anti-particle is at rest after rotation into helicity frame

Corrected transformations of helicity rotation components

Example: \(\Lambda_b \rightarrow \Lambda \gamma, \Lambda_b \rightarrow p\pi^+ : \Gamma(\Lambda_b) = (1 + 0.642 \alpha_\gamma \cos\theta_\pi) \alpha(\Lambda_b) \)

BEFORE: \(|\text{Gradient}| \ p_1 = |\alpha_\gamma| = 0.355 \neq 1 \)

AFTER: \(|\text{Gradient}| = 1 \) as expected
Particle Tuning

- DECAY.DEC: full generic particle decay file using PDG BFs
- Non-trivial issues when updating information using “automatic” tools
 - PDG sub-mode table indents inconsistent ⇒ double counting of BFs
 - Requires careful manual checking (reading original papers)
 - \(\Sigma \text{Exclusive} = \text{Inclusive} \) not always the case (e.g. semileptonic decays)

- Particle properties in evt.pdl (LHCb & v1.6.0) updated to PDG 2014
Inclusive charm BF tuning (Michal Kreps)
Implemented in LHCb and v1.6.0 DECAY.DEC (Pythia modes use Pythia8)
Future

• Updates in progress
 – DECAY.DEC: list of generic decays; consistency between inclusive/exclusive modes
 • “Recent” tuning only done for semileptonic B/D decays
 – Some more physics models, e.g. \(B \to u \ell \nu \) (LHCb), ...

• Will migrate general (Cern svn) repository to HepForge (git)
 – Integrated repository with web-tools, doxygen documentation
 • Tracking of bugs and new/requested features
 – Hope is that all experiments will eventually use this
 – Will use git and its code review tools
 • Experiments can “fork” code, add their changes, then we can add them to master version so that everyone else can benefit from fixes/additions

• Would like to remove remaining EvtGen Fortran code
 – Old CPV models involving \(B \to 3 \) pseudoscalars (e.g. \(3 \pi \) with CKM \(\alpha \))
 – Fortran compiler is still required if you need Tauola++

• Lots of hardcoded physics parameters (mainly form factors)
 – Would be good to unify these, allow configuration via parameter files
 – Long term project, depends on interest from potential users
Open questions for discussion

• **Q1: Updates to DECAY.DEC from (latest) PDG tables**
 a) Σ Exclusive modes \neq Inclusive branching fractions (EvtGen rescales to 1.0 in such cases)
 b) Avoiding double-counting \Rightarrow manual checking (slow process...reading papers)
 c) Try to combine update efforts with other MC generator groups (e.g. Pythia, Sherpa)

• **Q2: Tagging performance, generic decays**
 a) Generic $B \rightarrow D\pi/DK$ (BF~35%) decays use Pythia \Rightarrow gives same p distributions
 b) Quark content in Pythia modes last tuned during BaBar days (early 2000’s)
 c) Tuning study started by M Grosse & H Lacker few yrs ago, unknown if completed:
 see CERN EvtGen workshop Jan 2014: https://indico.cern.ch/event/290370

• **Q3: Baryonic B decays**
 Too few models in EvtGen. Can we improve this?

• **Q4: Improve testing and validation of existing models**
 a) Using existing models for new decay searches has revealed limitations/bugs
 e.g. LHCb extensions for semi-tauonic decays, spin-1/2 antiparticle decays
 b) Have experiments come across similar issues/problems?

• **Q5: Adding new models from theoretical predictions**
 EvtGen needs amplitudes in helicity formalism (spinors) \Rightarrow angular distributions
Backup
EvtGen decay generation algorithm

- Uses amplitudes, summing over helicity (projection of spin onto \mathbf{p} direction) states to include full angular information
 \Rightarrow spinor algebra (Jacob-Wick convention)
- Decay chain: sequence of sub-decays, e.g.
 $B \rightarrow D X, \quad D \rightarrow Y h, \quad X \rightarrow a b c$
- Generates kinematics for each sub-decay node
- Accept/reject decay probability per node:
 $P = \sum_{\lambda, \lambda'} \rho \, A_\lambda \, A_{\lambda'}^* = \text{sum over all decay helicity states}$
 $\rho = \text{forward/backward spin-density matrix containing correlated angular information from parent/sibling decays}$
 $\lambda = \text{helicity states}; \, A_\lambda = \text{decay amplitude for state } \lambda$
- Each successful node decay is kept during decay cascade
 - Saves computational time for generating events
- Allows for different amplitude models for each node
 - Vector, scalar, tensor particles; form-factors; resonances