PSB RF system Upgrade Availability studies

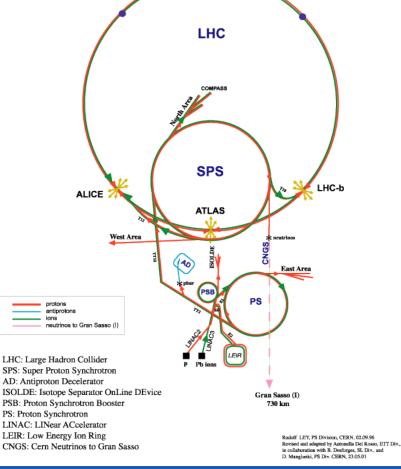
Odei Rey Orozko Availability modelling tools Workshop CERN, July 2016

Acknowledgments: Andrea Apollonio, Michael Jonker, Mauro Paoluzzi.

July 2016 -- Workshop

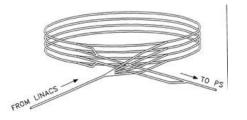
Odei Rey Orozko

- The PSB RF System
- Availability and Reliability studies
- Modelling
 - Input data
 - Assumptions
- Results
- Conclusions

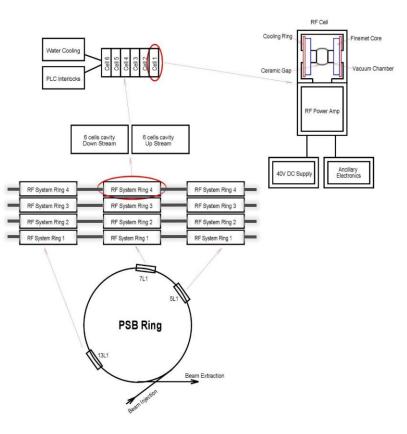

- The PSB RF System
- Availability and Reliability studies
- Modelling
 - Input data
 - Assumptions
- Results
- Conclusions

PSB RF System

- The **Proton Synchrotron Booster (PSB)** is the <u>second accelerator (first synchrotron)</u> in the CERN accelerator chain.
- Receives protons from Linac2 (to be replaced by Linac4 from 2019).
- Delivers to :
 - PS
 - Isolde
 - Dump



July 2016 -- Workshop


Odei Rey Orozko

PSB RF System

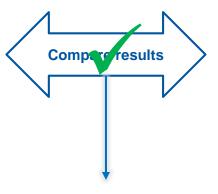
• Made up of <u>four superimposed synchrotron rings</u>.

- Each synchrotron ring has its independent RF system.
- In the framework of the LHC Injectors Upgrade project the **PSB RF system will be upgraded.**

The PSB RF System

- Availability and Reliability studies
- Modelling
 - Input data
 - Assumptions
- Results
- Conclusions

Availability and Reliability studies


Scope: Dependability studies to assess the required RF system availability and reliability. <u>Challenges:</u>

- High number of components
- Complex (hierarchical) redundancies
- Maintenance strategies

Two approaches:

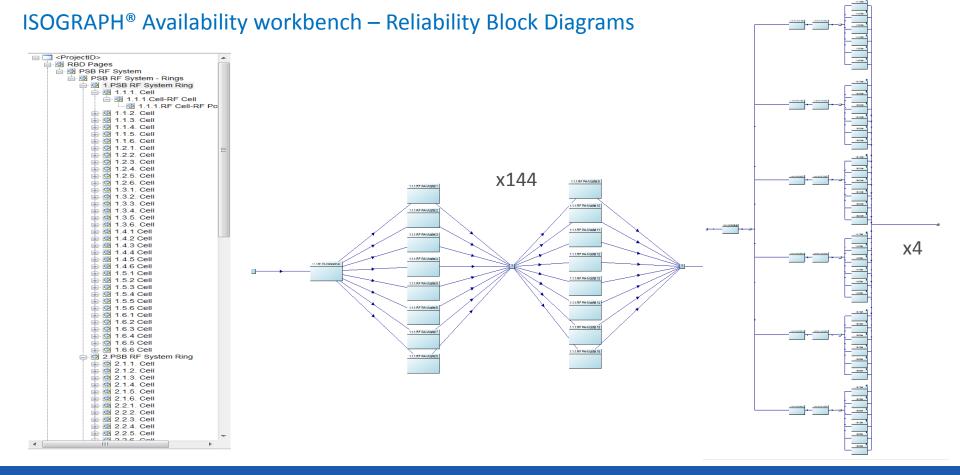
Monte Carlo Simulations

- Commercial software: Isograph Availability workbench -> Reliability Block Diagrams
- Each simulations run takes more than one day (due to the amount of components and redundancy).

Analytical calculations

- Boolean system probability theory.
- Calculations take less than 5 minutes.

Validate the analytical model


Faster method for availability calculations !

July 2016 -- Workshop

- The PSB RF System
- Availability and Reliability studies
- Modelling
 - Input data
 - Assumptions
- Results
- Conclusions

July 2016 -- Workshop

Input Data- MTTF

Component	No. of components in the system	MTTF (years)	MTTF (h)	Data source
Water Cooling	24	10x24	2102400	Expert experience. Machine made up of 24 components failed ones in 10 years.
PLC Interlocks	24	22	200000	PLC MTTF=Its Power Supply MTTF Manufacturer data: Values from 200.000 to 980.000 hours
DC Supply	144	5	43800	Expert experience.
Ancillary Electronics	144	5	43800	Expert experience.
Cooling Ring	144	40x10x50	175E+6	Expert experience from PS. 1 ring failed in 40 years, 50 rings per cavity, 10 cavities
MA Core	144	10000/2	43.8E+6	Expert experience from various machines. One Finemet Core failed once each 10.000 years. The component is made up of two Finemet Cores
Ceramic Gaps (36)	4 (144/36)	20000/36	4.8E+6	Expert experience from various machines. One Ceramic Gaps fails ones each 20.000 years
Mosfets pair	4608/2	18600000/2	8.15E+10	Manufacturer data
Mosfets Driver	144	18600000	1.63E+11	Manufacturer data

Company		Spares Available			
Component	Corrective Maintenance(h)	Best Case (100%)	Worst Case		
Water Cooling	2+4	24	2 (10%)		
PLC Interlocks	2+4	24	2 (10%)		
DC Supply	2+4	144	36 (25%)		
Ancillary Electronics	2+4	144	4 (3%)		
Cooling Ring	72	144	24 (17%)		
MA Core	72	144	26 (18%)		
Ceramic Gaps	72	-Not possible-	1 (%25) – (28/36		
Mosfets pairs/Drivers	2+4	10000	1382 (%30)		

Planned Maintenance time

48 hours

Lifetime

6714 h (3 Operation phases and 3 PM phases)

Operation PM	Operation	PM	Operation	PM
3 months 48h	3 months	48h	3 months	48h

Assumptions

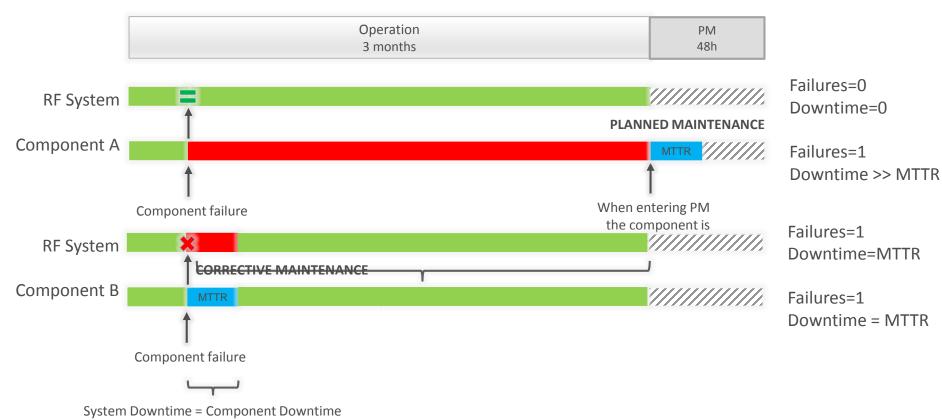
CORRECTIVE MAINTENANCE:

Maintenance done when the RF system is not available any more due to components failures.

- **C**M in all the failed components.
- □ Components are non-operational* when doing CM.

PLANNED MAINTENANCE:

Scheduled maintenance at predefined time.


- □ Components are non-operational* when doing PM.
- PM time is not taken as RF system downtime.
- Non-operational : The component can not experience failures

Two scenarios:

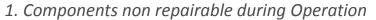
- 1. Components cannot be repaired during Operation.
- 2. Only DC, AE and PLC repairable during Operation.

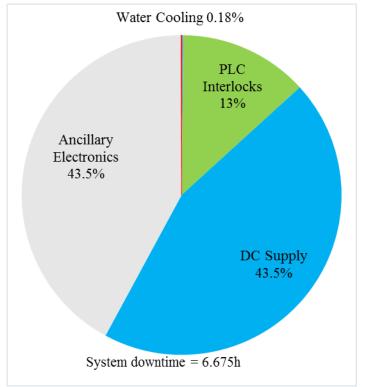
Assumptions

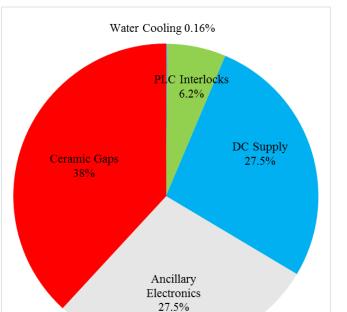
- The PSB RF System
- Availability and Reliability studies
- Modelling
 - Input data
 - Assumptions
- Results
- Conclusions
- Maintenance Strategy variation

Results – PSB RF System Availability predictions

1. Components non repairable during Operation


No. of system failures	Downtime (h)	MTBO(h)	MTTR(h)	Mean Availability	Availability at Lifetime	
1.077	6.7	6234.3	6.2	99. 90%	100%	


2. DC, AE and PLC repairable during Operation


No. of system failures	Downtime (h)	MTBO(h)	MTTR(h)	Mean Availability	Availability at Lifetime	
0.06	0.5	114866.3	8.62	99. 99%	100%	

Results - Downtime Contributors

System downtime = 0.5 h

2. DC, AE and PLC repairable during Operation

June 2016 -- MPE Technical Meeting

Odei Rey Orozko

Results – PSB RF System components Availability and Spares predictions

1. Components non repairable during Operation

2. DC, AE and PLC repairable during Operation

Total no. of spares	Component	No. of failures	MDT per failure (h)	MTTR	Total no. of spares Water Cooling PLC Interlocks DC Supply Ancillary Electronics Cooling Ring Finemet Core	Component	No. of failures	MDT per failure (h)	MTTR
Ancillary Electronics II Cooling Ring Ceramic Gaps MOSFETs MOSFETs	MOSFETs Driver	0	0	6	Ancillary Electronics III Cooling Ring Finemet Core Ceramic Gaps MOSFETs MOSFETs Driver	MOSFETs Driver	0	0	6
16	MOSFETs	0	0	6	16	MOSFETs	0	0	6
14	Ceramic Gaps	0.003	72	72	14	Ceramic Gaps	0.003	72	72
12	MA Core	0.02	1079.3	72	12	MA Core	0.02	1182.44	72
10	Cooling ring	0.004	980.6	72	10	Cooling ring	0.004	1453.3	72
8	Ancillary Electronics	18	954.1	6	8	Ancillary Electronics	18	6	6
	DC Supply	18	954.1	6		DC Supply	18	6	6
2	PLC Interlocks	0.76	203.03	6	2	PLC Interlocks	0.64	6	6
0 Total Operation Total PM	Water Cooling	0.06	240.2	6	0 Total Operation Total PM	Water Cooling	0.06	483.2	6

June 2016 -- MPE Technical Meeting

- The PSB RF System
- Availability and Reliability studies
- Modelling
 - Input data
 - Assumptions
- Results

Conclusions

Conclusions I

- The RF system mean **availability** is evaluated as 1) **99.89%** / 2) **99.99%**.
- The expected number of times the RF System will fail during one operational year is about 1) one / 2) zero.
- DC Supply and Ancillary Electronics are the components contributing more to RF system downtime.
- PLC Interlocks failures are also contributing to RF system downtime.
- The **expected number of spares needed** in one operational year:

Ancillary Electronics	18
DC Supply	18
PLC Interlocks	1

- The impact of components failures on the PSB RF System is minor due to the implemented redundancy.
- Predictions on maintenance cost and required personal could be done.

Conclusions II

Isograph:

- The **terminology** used in Isograph does not go inline with the accelerator domain terminology.
- As Isograph is not a specific software for accelerators, the definition of accelerator driven operational modes is not straightforward and **requires a deep understanding** of the simulation methodology (time consuming).
- With more than 5000 components, the definition of the PSB RF System Reliability Block diagram required **a lot of manual work** (time consuming).
- Ones the model is defined and the simulation terminology has been understand, different assumptions (e.g. on maintenance strategies) are easy to implement.
- **Data analysis is needed** to retrieve the results in the desired terms.

Thanks for your attention!

Odei Rey Orozko odei.rey.orozco@cern.ch

June 2016 -- MPE Technical Meeting