

ELMAS – RAMS, Risk Assessment and Use Cases

EuCARD2 WP4 – CERN (Geneva) 22-23.6.2015 Reliability of Accelerators for Accelerator Driven Systems (ADS)

Ramentor Oy Hermiankatu 8 D FI-33720 Tampere Tel. +358 (0) 40 746 6585 info@ramentor.com www.ramentor.com

Jussi-Pekka Penttinen

Outline

- 1. Brief introduction
 - Ramentor, ELMAS, RAMS, Risk assessment process
- 2. Concrete use cases
 - a) Availability and radiation safety of encapsulation plant
 - b) Life Cycle Profit Management (LCPM) of process critical molding cranes Modernization and improvement scenario analysis
 - c) Analysis of Alternative Bypass Lines of Mineral Processing Line
 - d) Infrastructure Availability Design-Phase Data Center
 - e) Nuclear Power Plant (NPP) Sustaining and developing safety, availability and performance factors

Ramentor Inc.

- Founded in 2006 and based in Tampere, Finland
 - Personnel ~10 (Dr. & M.Sc. Mech. & aut. eng. / Applied math. / Software dev.)
 - Privately owned and independent software and expertise company
- Background: Tampere University of Technology (TUT)
 - Finnish Technology Agency (TEKES) Competitive Reliability Programme 1996-2000
 - Probabilistic approach in reliability and maintenance management 2001-2003
 - RAM Products 2003-2005, RAM Solutions 2006-2008, RAM Efficiency 2008-2010
- Please visit for more information: *www.ramentor.com*

Our goal is to become the leading expert and a partner in the field of Risk Management and RAMS methods and tools

Ramentor – Experience in Industry Sectors

- Energy Industry:
 - Nuclear Power Plants, District Cooling, ...
- Process Industry :
 - Pulp & Paper Mills, Steel Industry, Mineral Processing, Medical, ...
- IT Industry:
 - Data Centers, Telecommunication, Broadband connections, ...
- Equipment Manufacturers:
 - Cranes, Elevators, Thruster Units, ...
- Education and Research Organizations:
 - Universities (technology / applied sciences), CERN, ...

Ramentor – ELMAS Users / Co-developers

Industry Service	Design for Reliability	Quality & Risk mgmt
Caverion ALGOL EMPOWER		INGRID Fortum OYRY TeliaSonera VAGON Google Sa NCKIA
Operation & Maintenance	After Sales Support Service & Warranty	Research & Education
	Rolls-Royce KONE KONECRANES Otec Valmet CARGOTEC VACON®	TAMPERE UNIVERSITY OF TECHNOLOGY LAPIN AMK Lapland University of Applied Sciences SOLTEQ Source Jyväskylän AMK

www.ramentor.com

ELMAS – An Acronym

Event

- Time to Failure, Distribution
- Time to Repair, Distribution
- Maintenance actions
- Break and downtime loss
- Repair Costs
- Hazards
- Usage and stress profile
- External events

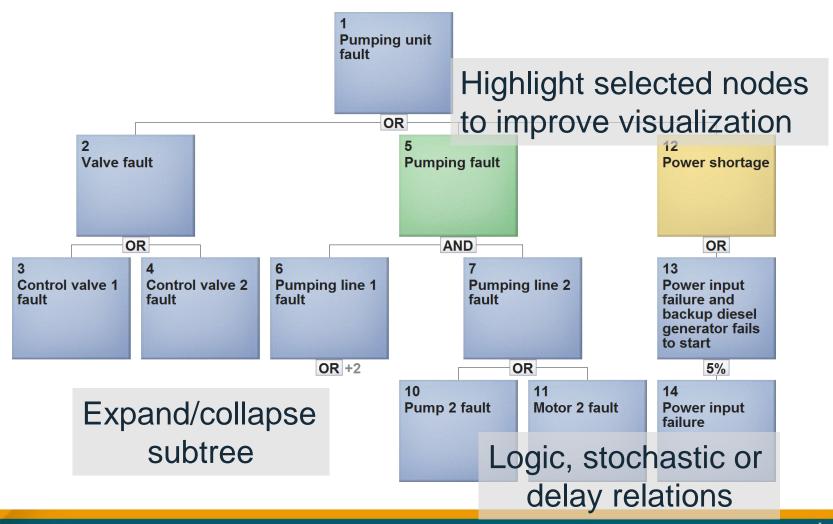
Logic

- OR
- AND
- K/N-Voting
- XOR-Exclusive
- Limits
- Conditional probability
- Delays
- Throughput, fuzzy logic
- Dynamic coding

Modeling

- Fault tree
- Event tree
- Causeconsequencetree
- Reliability block diagram
- Process diagram
- Waiting and redundancy
- Buffers
- Failure modes, RCA

Analysis


- Simulation
- Reliability, Availability
- Risk Analysis
- Importance measures
- Conditional probabilities
- Spare part consumption
- Resources
- FMEA, Classification, RCM, Decision tree, Criticality

Software

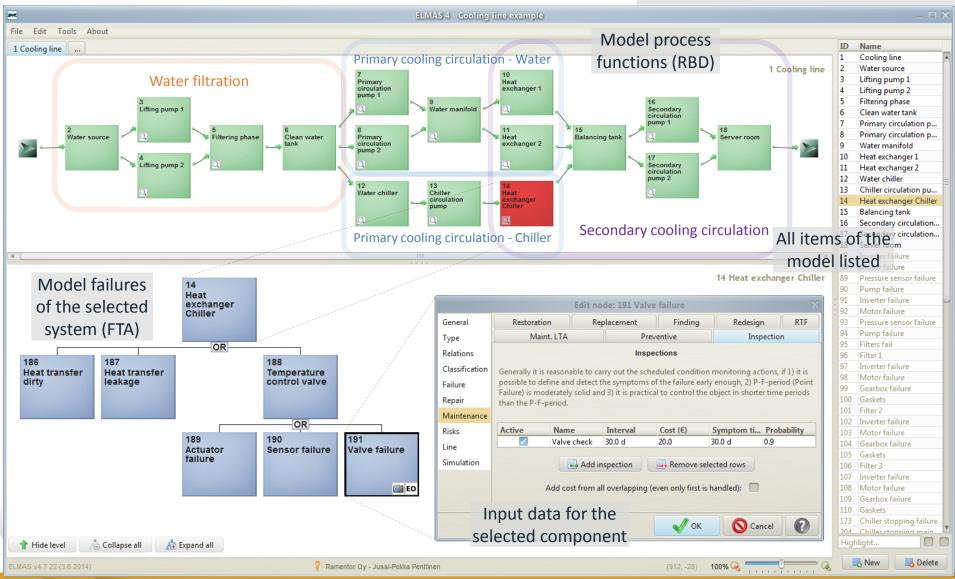
- Graphical user interface
- Excel export and import
- HTML report
- Table summary
- ERP interface
- Project versioning
- Template library
- Search
- Web start

ELMAS – Modelling of a Fault Tree Structure

ELMAS – Root: Failure/Repair Distribution

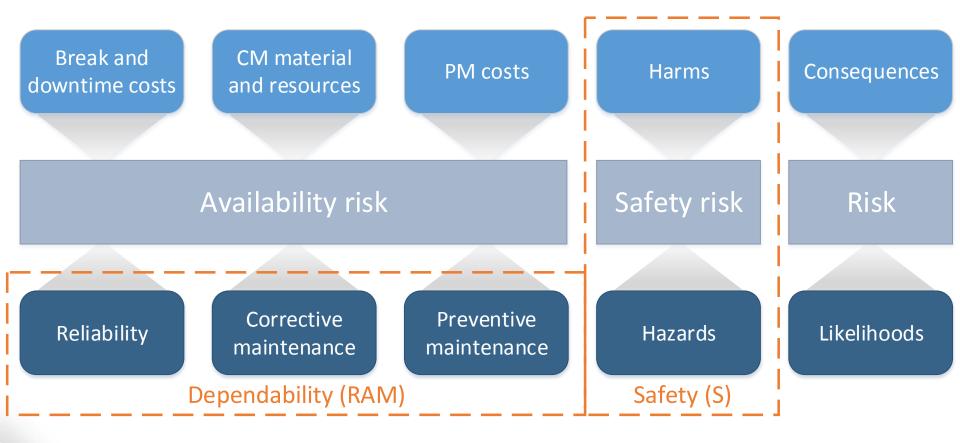
**			ELMA	AS 4 - Basic Analysis			\neg \Box \times
File	e Edit Tools Abo	ut					
Fa	ult Tree: 1 Pumping un	it fault				ID Name	
Node editor opened for th selected root	2 Valve fa General Type	ult Time to fai	dit node: 3 Control valve 1 fa	nping fault Estimates × with various	ee: 1 Pumping unit fault 12 Power Time t 100%	10 Name 1 Pumping unit fau 2 Valve fault 3 Control valve 1 fa 4 Control valve 2 fa 5 Pumping fault 6 Pumping line 1 fa 7 Pumping line 1 fa 7 Pumping line 1 fa 9 Motor 1 fault 9 Motor 2 fault 11 Motor 2 fault	ult ult
Own p Failure	Classific Classific Failure Repair Mainten Classific Failure Repair Mainten Line Simulati	Mean ti	Estimate: Mean time to failure Estimate: Mean time to failure Estimate: Mean, At least (5%), At Estimate: Mean, Min, Max, Devia Estimate: Weibull Estimate: Exact time to failure Estimate: Rate History: Time to failure History: Usage time		80% 70% 60% 50% 40% 30% 20%		Cumulative distribution function sh
Repair	data Dynamic		History: Exact time to failure		10%		
				Distribution	2 a 4 a 6 a Mean: 3 a D	8 a 10 a 12 a 14 a ev:3 a	16 a
-	Collapse all	Expand all	III amentor Oy - Jussi-Pekka Penttinen	created from history data	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Highlight	Delete

ELMAS – Gate: Logic/Stochastic/Delay

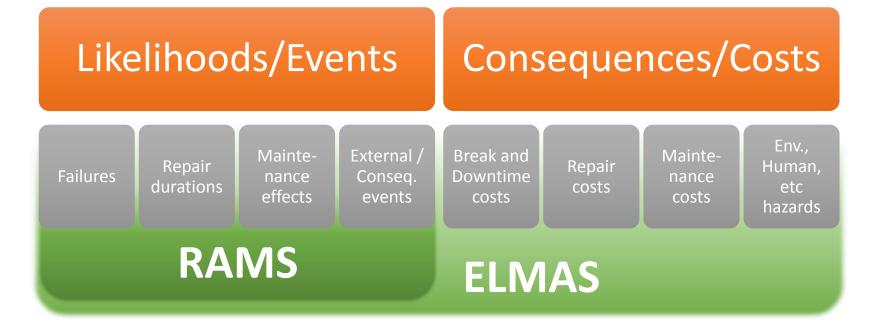

	*			E	LMAS 4 - Ba	sic Analysis				_ = ×
	File Edit T	ools About								
	Fault Tree: 1 P	umping unit faul	t						ID	Name
									1	Pumping unit fault
				1		Fault T	ree: 1 Pu	mping unit fault	2	Valve fault Control valve 1 fault
				Pumping	unit		114		4	Control valve 2 fault
				fault		Node e	ditor		5	Pumping fault
									6	Pumping line 1 fault
						opened	1 tor		7	Pumping line 2 fault
				OR					8	Pump 1 fault
				UR		selecte	a gat	ie –	9	Motor 1 fault
		2			5		•	12	10	Pump 2 fault
		Valve fault			Pumping f			Power shortage	11	Motor 2 fault
				Edit node: 5 Pumping fa	ult	×		Shortage	12	Power shortage
		General	Tree Blo	ock Sub block					13	Power input failure and
Relations	page		Thee bit			A	1		14	Power input failure
	•••	Туре		G	ate logic	1		OR		
opened fi	rom	Relations	Gate type:					13		
the node	Control	Classification	oate type.		All child	ren needed.		Power input		
the node	eallor	Failure		OR (some)	hildren			failure and backup diesel		
		Denein		AND (all)				generator fails		
		Repair	General	K/N (voting)	1 fault			to start		
		Maintenance	General	XOR (exclusive)	2 fault			5%		
		Risks	ocherar	Limits (min/max)	2 Tourc			14 C+		bootio(50/)
		Line		Priority AND	arents		ault		UCI	hastic (5%)
			Node type	Condition (Delay/Duration)		Y		failure	oti	on shown
		Simulation	General	Probability	fault			ICI	au	
		Dynamic		Root		v		in	tre	e structure
			٩ (List	of av	ailable				
				gate	e type	S				
				Ŭ						
	Collapse	all 🛛 🔒 Exp	and all						Hia	hlight
	4)	L ng	
	ELMAS v4.7.21 (14.5.2014)	📍 R	amentor Oy - Jussi-Pekka Penttin	en	(749, 392) 10	0% 🔍 🚃			New Delete
							1.1			

www.ramentor.com

ELMAS 4.7


http://www.ramentor.com/products/elmas/

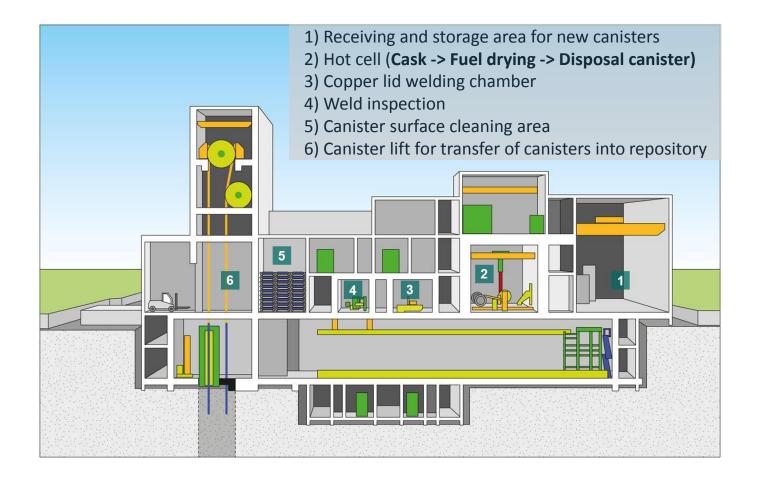
www.ramentor.com


ELMAS – RAMS and Risk

ELMAS – Risk Assessment and RAMS

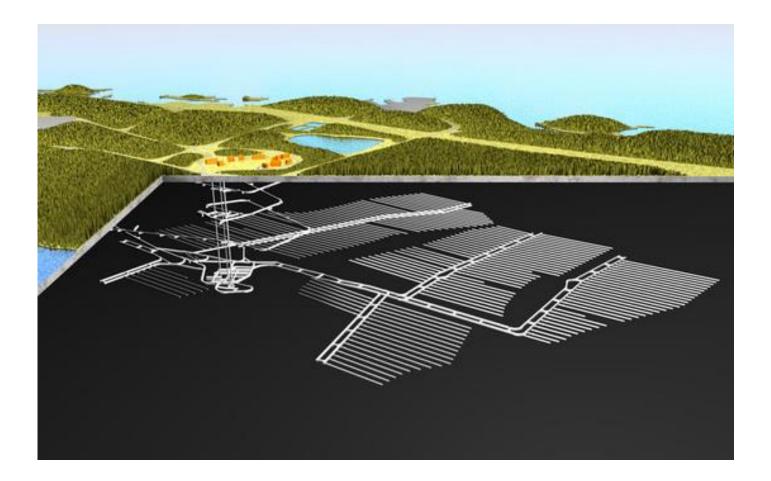
ELMAS – Risk Assessment Process (ISO GUIDE 73)

- 1) Risk identification
 - Find, recognize and describe risks
 - ELMAS: Collect available information to comprehensive model
- 2) Risk analysis
 - Comprehend the nature and determine the level of risk
 - ELMAS: Stochastic discrete event simulation of the model
- 3) Risk evaluation
 - Compare analysis results with risk criteria to determine
 whether the risk and its magnitude is acceptable or tolerable
 - ELMAS: Report explicit results, compare scenarios, ...



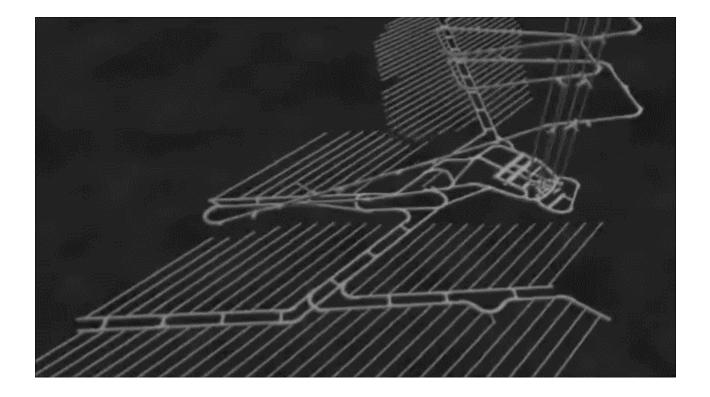
Case A) – Final Disposal Facility (FDF)

- The purpose of the FDF is to take care of packing the spent nuclear fuel assemblies in canisters and to dispose them permanently into the bedrock
- Aboveground encapsulation plant
 - Spent nuclear fuel is received, dried and packed into final disposal canisters
- Repository (ONKALO)
 - Located deep inside the bedrock, in which the most important section are the tunnels where the encapsulated spent nuclear fuel is disposed of



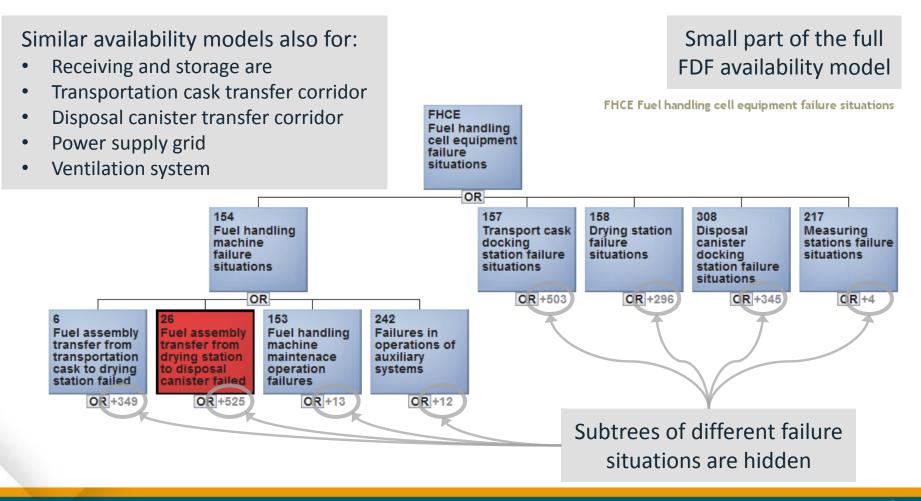
Case A) – Final Disposal Facility (FDF): Aboveground Encapsulation Plant

Case A) – Final Disposal Facility (FDF): Repository (ONKALO)

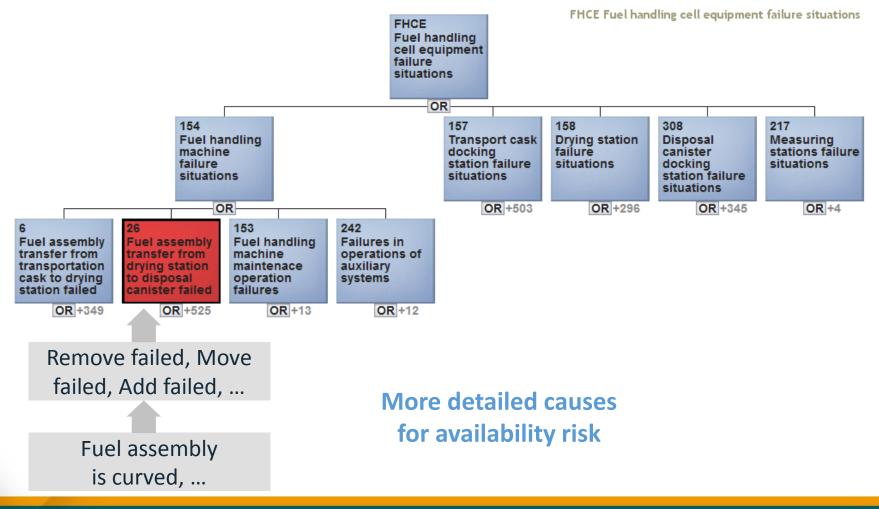


Case A) – Final Disposal Facility (FDF): Encapsulation Plant Case Description

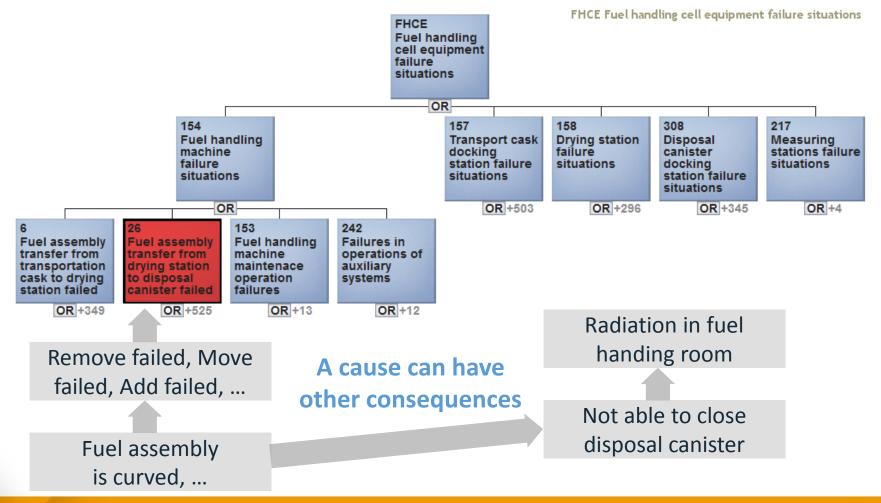
- ELMAS analyses were made by Pöyry for Posiva
 - Availability and radiation safety of encapsulation plant
- Transportation cask -> Fuel drying -> Disposal canister
 - Availability models: Docking, Lifting, Moving (AGV), Welding, ...
- Design review and management of required changes
 - PSAM12 publication: Virtanen, Penttinen, Kiiski, Jokinen
- Safety models and reports
 - Ventilation system: Cooling, heating, filtering, low pressure
 - STUK (The Radiation and Nuclear Safety Authority in Finland)


Case A) – Final Disposal Facility (FDF): Fuel Handling Cell Equipment Example (1/5)

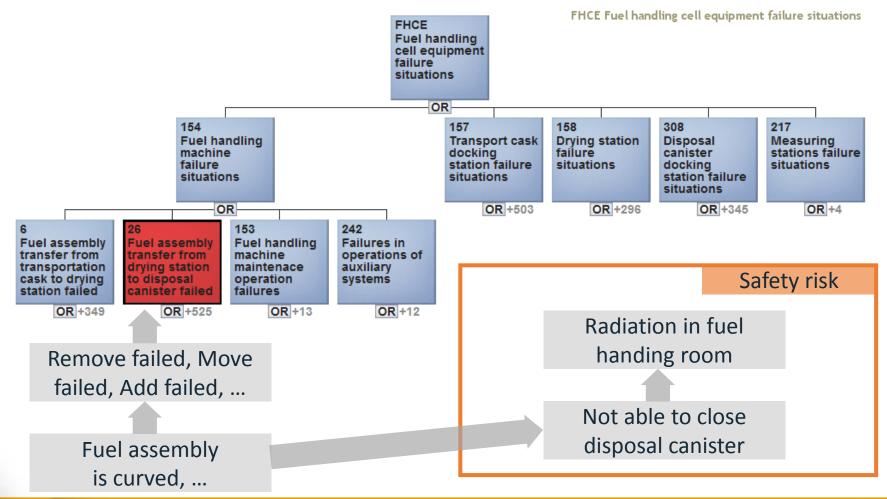
Full video: https://youtu.be/hZI3AYI85n8



Case A) – Final Disposal Facility (FDF): Fuel Handling Cell Equipment Example (2/5)

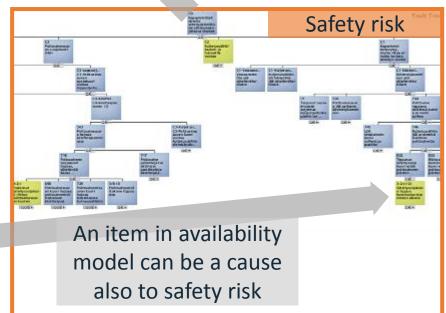

Case A) – Final Disposal Facility (FDF): Fuel Handling Cell Equipment Example (3/5)

www.ramentor.com



Case A) – Final Disposal Facility (FDF): Fuel Handling Cell Equipment Example (4/5)

Case A) – Final Disposal Facility (FDF): Fuel Handling Cell Equipment Example (5/5)


www.ramentor.com

Case A) – Final Disposal Facility (FDF): Combined Risk Model – Availability/Safety

All items and their causalities related to availability and safety risks are collected to a comprehensive model: **Availability and Radiation Safety of Encapsulation Plant**

Case A) – Final Disposal Facility (FDF): Design Review / Change Management

*	EncapsulationPlant	- ELMAS 4.7	
Design Review Process	and diation safety of Encapsulation plant		1
Management of Design	Changes:		Fault Tree: 1 PRA Encapsulation plant
1) List improvement ta	asks to	a that distant	7 8
items in Design Rev	Fotosharauv		Ramathwaren en angelen felt evis amerikan kalanitz (KE 122) (KE 123)
2) Schedule and priori	ex3		Printen and Britan a
listings based on ris	Palan yitay dasali	Riferen aum	ction: Some other improvement Y X P
3) Update the status a	El-REAETRING REAL REAL REAL REAL REAL REAL REAL REAL	Improvemen	nt task: Some other improvement Y
impacts in follow-u	Vacto Kateray- kateria muhin silahin	Res Res	international and a second sec
	i kand alla-series yeljaaren de vascha aktivitaten yeljaaren berte series yeljaaren berte series kontesenoon	Ni kiraki kannik vazaa kategori kiraki kategori kiraki	
General	Edit node: 186 Canister moves after docking and cause Preventive Inspection Restoration Replacement Findi	Comments:	P
Relations	Redesign	A	P
Classifica	ion Improvement tasks and design changes are listed here during desi	ign review. They are	Maintenance v P
Failure	performed and scheduled according to their priorities. In follow u checked and the needed changes are updated to the model.	p meetings the status is Responsible	Person C T
Repair		= Date:	1 F
Maintena Risks	Active Improvement task Kesponsible Sta	ate State: State:	Under implementation • 4
Line		nder implementation	
Simulatio	Add action Remove selecter N	lot implemented	5
		urther clarification needed	Not defined € F
Collapse all		Inder implementation	
		nplementation finished	
ELMAS v4.7.32 (4.3.2015)	7 Ramentor Oy - Jussi-Pekka Penttinen		(4556, 868) 36% 🔍 🔤

Case A) – Final Disposal Facility (FDF): Key Findings and Improvements

- Comprehensive availability and safety model created
- Several changes were made based on design reviews
 - Improved identification of unexpected impacts of the design changes on all related systems and to risks
 - Early stage identification of the problem areas became possible
- STUK statement 12/02/2015 (construction license):
 - Nuclear waste facility can be built to be safe
- Failure tolerance analysis can utilize the created models
 - Required for STUK later (operating license)
 - Common cause failures, Defense in depth levels, ...

Case B) – Life Cycle Profit Management (LCPM)

- Aims to maximize the life cycle profit of an investment
- Guides development work and investment decisions to focus on overall costs (not just investment costs)
 - All relevant cost factors from specification to decommission
- Emphasizes to take unavailability into consideration
 - Production loss
 - Break costs
 - Overtime work costs

Case B) – Life Cycle Profit Management (LCPM): Molding Crane

Case B) – Life Cycle Profit Management (LCPM): Molding Cranes Case Description

- Scenario analysis of two process critical molding cranes
 - Work rhythm 3 shifts/day and 5 days/week
 - One crane can handle 75% of the process flow
 - Overtime works can be used at weekends if necessary
- Comparison of 3 scenarios:
 - 1. Current situation
 - 2. Modernization of auxiliary hoisting & corrective action planning based on improvements potentials
 - 3. Modernization of auxiliary hoisting & renewal of older crane

Figures are

fictional

Case B) – Life Cycle Profit Management (LCPM): Modeling, Simulation and Analysis

**			C-38 & 0	52: Modernisation + 1	New crane investment	- ELMAS 4.7	7			_ @ ×
	dit Tools About								ID	Name
Fault I	ree: TOP Both cranes (C-38 & C-52) failured at the same	time							ТОР	Both cranes (C-38 & C-5 A
					E la T	TOPPAL	cranes (C-38 & C-52) failured at th	A	C-38	Molding crane C-38 failure
Modo	ling of	TO	P		rautt Free:	TOP Both o	cranes (C-38 & C-52) failured at th	e same time	C-38-10	Hoisting trolley failure
ivioue	ling of:	Bo	th cranes						C-38-10-10	Main hoisting
		(C	-38 & C-52)						C-38-10-10-10	Koukku
- Cran	e failure logic		lured at the						C-38-10-10-10-10	Koukkutakeen vikaantumi
Crun		50	me time						C-38-10-10-10-20	Painelaakerin vika
Carrie		la la aturca ara							C-38-10-10-10-30	Köysipyörät
- Caus	se consequence logi	ic between 👘	AND						C-38-10-10-10-30-10	Laakerivika
		C-38					C-52		C-38-10-10-10-30-20	Köyden uralta suistumiss
failu	re modes, functions		ane				Moldi	ng crane ailure	C-38-10-10-10-30-30	Taittopyörän murtuminen
Tanu	re modes, functions	$5, \mu I O C C S C - 38$ failure					C-52 f	ailure	C-38-10-10-20	Köydet
									C-38-10-10-20-10 C-38-10-10-20-20	Köydet - Valmisteltu vaihto Köydet - Yllättävä vaihto
etter	cts and costs								C-38-10-10-20-20 C-38-10-10-30	Köydet - Yllattava vainto Köysipyörät
circo									C-38-10-10-30-10	Laakeriviat
		OR						OR +225	C-38-10-10-30-20	Köyden uralta suistumiss
	C-38-10			C-38-20			C-38-30		C-38-10-10-30-30	Taittopyörän murtuminen
	Hoisting			Bridge failure			Electrifying		C-38-10-10-40	Köysirummun laakerien v
	trolley failure						failure		C-38-10-10-50	Nostovaihde
									C-38-10-10-50-10	Tiivistevuodot
									C-38-10-10-50-20	Hammaspyörien kuluminen
	OR			OR			OR +89	Ξ	C-38-10-10-50-30	Laakeriviat
	UK	7					IOR 1465		0 0 00 40 40 50 40	Managadi (1997
	Analysis: Simulatio	on Tool	×	C-38-20 Travelli						×
Profile	Entity risks Node risks Subtree risk	cs Relative risks LCC Co	omb.risks	machin	ery					
FIONE	Linuty lisks Node lisks Subtree lisk	is Relative fisks LCC C	JIIIJAIISKS	failure			400000 -			
Simulation	Disks of	the entity								
Sindiction	Naka O	the entry					350000 -			
Basic	o. r. l.:				R		300000 -			
	Studied time period: 10 a			C-38-20-20-20	C-38-20-2		250000			
Conditional				Gear failure	Travellin	g				
	Total risk: 1758	014 €			motor fai	llure	200000 -			
Importance							150000 -			
D: 1	T (1)	D11.40					100000			
Risks	Type of risk	Risk (€)		OR +3	OR		100000			
Risks 2	Scrapp material	31 230		UK TO		-	50000			
NISKS Z	Overtime work	452 344				C-38-20-				
Line	Production loss	201 908			Brake failure	Motor fa	1 a 2 a 3	a 4a 5a	a 6a 7a	8a 9a 10a
	Repair - Spare part	325 522					Carona motorial Covertina	a wark 📕 Drad	ustion loop E Do	nair. Chara nart
Overview	Repair work	320 050					Scrapp material Overtim			
	Maintenance - Material	36 000			OR +2		📕 Repair work 📒 Maintenanc	e - Material 📕	Maintenance - Wo	ork 🛯 Investments
	Maintenance - Work	90 960			UR TZ					
	Investments	300 000						Show graph	plots 8	
	integrations	000 000		mmi				2.4		

www.ramentor.com

Case B) – Life Cycle Profit Management (LCPM): Comparison of Scenarios

Figures are fictional

-	-38 & C-5 io analysis	_		ario 1: situation			o 2: isation & ve actions			Scenario modernis C-52 rene	sation &	
	-	· · ·			C-52	correctiv	Char		 	C-52 rene	Chan	70
C-38 & C-	52 failures		27	7.6	20).0	27.5	-	16		39.1	ge %
	52 failure tin	ne		16 h		14 h	1 d 2				1 d 11	, .
		d unavailabilit		.28 %)98 %	23.4			88 %	31.3	%
C-38 failu				5.3		5.9	18.5			6.3	18.4	%
C-38 failu			97 d	23 h	75 c	14h	22 d 19	h	75 d	3h	22 d 21	h
C-38 unpl	lanned unava	ailability	~ 2.	68 %	~ 2.0	06 %	23.1	%	~ 2.0	04 %	23.9	%
C-52 failu	ires		36	5.7	35	9.0	1.8	%	22	6.6	38.0	%
C-52 failu	ire time		11	5 d	91 c	14h	23 d 20)h	58 d	23 h	12d 12	h
C-52 unpl	lanned unava	ailability	~ 3.	15 %	~ 2.	50 %	20.6	%	~ 1.5	54 %	51.1	%
Costs												
Scrapp ma	aterial		45	870	33	510	26.9	%	25	590	44.2	%
Overtime	e work		636	214	496	953	21.9	%	390	539	38.6	%
Productio	on loss		199	243	150	539	24.4	%	112	872	43.3	%
Repair - S	Spare part		411	001	368	415	10.4	%	282	830	31.2	%
Repair - V	Nork		375	465	358	243	4.6	%	275	880	26.5	%
-	ance - Materi	al	36	600	36	600	0.0	%	36 000		1.6	%
Maintena	ance - Work		94	320	94	320	0.0	%	90 9	960	3.6	%
Replacem	nent costs			C	8()81			()		
Unavailat	bility costs		1 79	8 713	1 54	6 661	14.0	%	1 214	4 671	32.5	%
Investme	ent costs			C	60	000			300	000		
Overall co	osts		1 79	8 713	160	6 661	10.7	%	1 514	4671	15.8	%

Case B) – Life Cycle Profit Management (LCPM): Comparison of Scenarios

Figures are fictional

C-38 & C-52	Scenario 1:	Scenario		Scenario 3: C-38 modernisation &			
Scenario analysis (10 a)	Current situation	C-38 modernis	sation &				
Scellar IO allarysis (10 a)	Current Situation	C-52 corrective	e actions	C-52 rene	wal		
			Change		Change		
C-38 & C-52 failures	27.6	20.0	27.5 %	16.8	39.1 %		
C-38 & C-52 failure time	4 d 16 h	3 d 14 h	1 d 2 h	3d 5h	1 d 11 h		
C-38 & C-52 unplanned unavailabilit	~ 0.128 %	~ 0.098 %	23.4 %	~ 0.088 %	31.3 %		
C-38 failures	375.3	305.9	18.5 %	306.3	18.4 %		
C-38 failure time	97 d 23 h	75 d 4 h	22 d 19 h	75 d 3 h	22 d 21 h		
C-38 unplanned unavailability	~ 2.68 %	~ 2.06 %	23.1 %	~ 2.04 %	23.9 %		
C-52 failures	365.7	359.0	1.8 %	226.6	38.0 %		
C-52 failure time	115 d	91 d 4 h	23 d 20 h	58 d 23 h	12d 12h		
C-52 unplanned unavailability	~ 3.15 %	~ 2.50 %	20.6 %	~ 1.54 %	51.1 %		
Costs		S	cenario 3 h	has the larges	st investr		
Scrapp material	45 870	33 510 CO	osts but the	e lowest over	all costs		
Overtime work	636 214	496 953	21.9 to res	idual unavail	ability %		
Production loss	199 243	150 539	24.4 %	112 872	43.3 %		
Repair - Spare part	411 001	368 415	10.4 %	202 030	31.2 %		
Repair - Work	375 465	358 243	4.6 %	275 830	26.5 %		
Maintenance - Material	36 600	36 600	0.0 %	36 000	1.6 %		
Maintenance - Work	94 320	94 320	0.0 %	90,960	3.6 %		
Replacement costs	0	8 081					
Unavailability costs	1 798 713	1 546 661	14.0 %	1 214 671	32.5 %		
Investment costs	0	60 000		300 000			
Overall costs	1 798 713	1 606 661	10.7 %	1 514 671	15.8 %		

Case B) – Life Cycle Profit Management (LCPM): Key Findings and Improvements

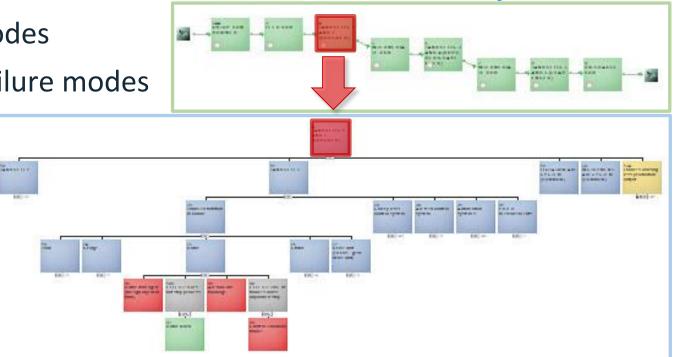
Figures are fictional

- Based on LCPM analysis, scenario 3, modernisation of auxiliary hoisting & renewal of older crane, improves the life cycle profit:
 - Production loss reduced ~43 %
 - Overtime work costs reduced ~39 %
 - Simultaneous failures reduced ~39 % and unavailability ~31 %
 - Total cost risk (including investments) reduced by ~16 % and 280 000 € during the 10 years period
 - Investment payback time ~5 years

Case C) – Mineral Processing Line

- Flotation process
 - Six processing tanks
 - Installed in series
 - Forming three tank pair units
- Goal of process
 - Recover metal particles from the slurry flowing through the tanks
 - with the help of rising air bubbles from the bottom of the processing tank

Attachment


Case C) – Mineral Processing Line (MPL): Case Description

- The main goals of the project were:
 - 1) Determine the availability and OEE of the analyzed process line
 - 2) Locate critical failure modes for the line operation
 - 3) Create methods for increasing the OEE value of the process
- Project team (Experts from Ramentor and client) created a model
 - All mechanical and automation components included
 - Components of processing tanks and supporting systems included
 - Also process and user-related faults included
- Overall equipment effectiveness (OEE)
 - In addition to availability also performance (and quality) included

Case C) – Mineral Processing Line (MPL): ELMAS Project Model

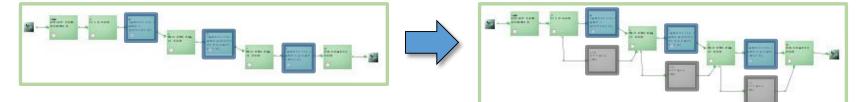
- The **flow characteristics** model of the flotation process was combined with extensive fault tree analytics
- 600 nodes
- 200 failure modes

Case C) – Mineral Processing Line (MPL): Key Findings

- 1) The failure events slowing down the production had a major effect on the line OEE value (High availability, Low OEE)
 - Failures stopping the production caused **30%** of the total loss
 - Failures slowing down the process **70%** of the total loss

Focus on the situations slowing down the process

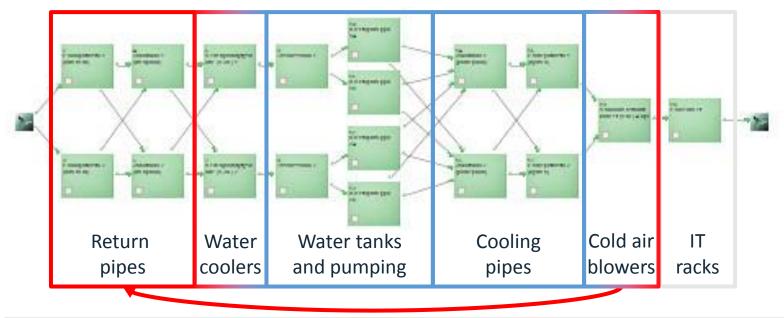
 About 10% of the failure modes caused over 83% of the total lost production


Focus on the highest imact failure modes

Case C) – Mineral Processing Line (MPL): Improvement – Maintenance bypass lines

- The effect of maintenance bypass lines installation shown
 - Direct the process flow around when a tank pair on repair
 - Only minor slowing down for the process during bypass

Tank pairs Maintenance bypass lines



- MPL manufacturer can justify the investment to customer
 - Lost production decreases by millions of euros during 10 years
 - The installation is quite inexpensive -> Very good investment!

Case D) – Infrastructure Availability: Design-Phase Data Center

- Availability study of a Data Center infrastructure
 - Including: Cooling system, Power input for the cooling, IT racks

+ Power input system (National grid inputs, Internal grid, UPS) for equipment and IT racks

Case D) – Infrastructure Availability: Case Description

- The main goals of the project were:
 - 1) Calculate the infrastructure availability
 - 2) Modifying the design structure to meet the highest Tier level 4
 - i.e. 99.995% availability (standard TIA-942)

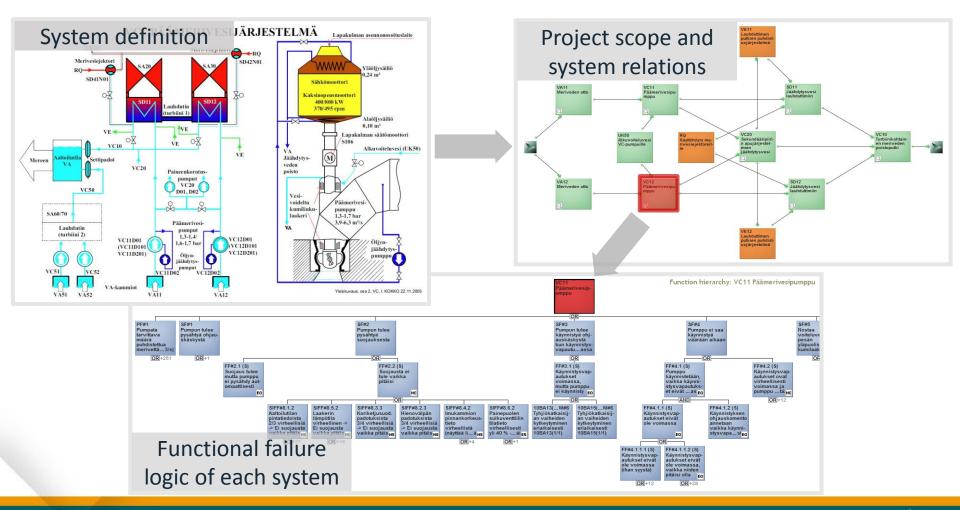
Tier Level	Requirements
1	 Single non-redundant distribution path serving the IT equipment Non-redundant capacity components Basic site infrastructure with expected availability of 99.671%
2	 Meets or exceeds all Tier 1 requirements Redundant site infrastructure capacity components with expected availability of 99.741%
3	 Meets or exceeds all Tier 1 and Tier 2 requirements Multiple independent distribution paths serving the IT equipment All IT equipment must be dual-powered and fully compatible with the topology of a site's architecture Concurrently maintainable site infrastructure with expected availability of 99.982%
4	 Meets or exceeds all Tier 1, Tier 2 and Tier 3 requirements All cooling equipment is independently dual-powered, including chillers and heating, ventilating and air-conditioning (HVAC) systems Fault-tolerant site infrastructure with electrical power storage and distribution facilities with expected availability of 99.995%

Case D) – Infrastructure Availability: Key Findings

- 1) The availability of the original design was at Tier level 3
 - The required highest Tier level 4 was not met
- 2) 8 hand valves were the source of highest availability risk
 - Minimum cooling power for operation is 75%
 - Repair of any of these 8 critical hand valves causes drop to 50% cooling power
- The power input line was extremely reliable even without the backup generator
 - Discussions started considering the need of a backup generator

Case D) – Infrastructure Availability: Improvement – Eight new hand valves

- Effect of installing eight new hand valves shown
 - Now also the original eight critical hand valves can be isolated
 - Possible to repair/change any valve on the cooling line without lowering the cooling power below the required 75%
- Tier level 4 was met



Case E) – Nuclear Power Plant (NPP): Project Scope

- RCM analysis of Main Cooling Water Pumping System
 - 1) Main function: Cooling of turbine condensers
 - 2) Secondary function: Cooling of auxiliary systems of secondary cooling circuit
- The Main Cooling Water Pumping System Includes:
 - 1) Sea water input, output and filtering system
 - Main sea water system (pumps, motors, tubes, sea water ejectors etc.)
 - 3) Initial lubrication water system
 - 4) Cleaning system of condenser tubes

Case E) – Nuclear Power Plant (NPP): ELMAS Project Model

Case E) – Nuclear Power Plant (NPP): Customer Demands

- 1. RCM analysis must include
 - All functions and functional failures
 - Safety, reliability, availability and maintainability aspect
 - All necessary cost types for comprehensive risk analysis
 - Maintenance action planning and optimization for critical equipment
- 2. RCM/ELMAS methodology training during the project

Case E) – Nuclear Power Plant (NPP): Key Findings & Value Added

- **Reduced** preventive **maintenance costs** by ~20%
- **Reduced overall cost risks** by ~10%
- Advanced criticality classification for equipment
- List of critical spare parts
 - Recommendations for spare part policy
- Motivation for improvements in use of operative ITsystems
- Scenarios for risks & equipment life cycle management

Summary – Applied ELMAS Features

- Cause-consequence relations model applied in each case
 - Fault tree applied in each case (Logic and stochastic relations)
 - Block diagram applied in two cases (Production flow)
 - Fuzzy relation in one case (75% operation with one crane)
 - Dynamic relations applied in one case (Change logic of backup)
- Failure and repair time definition for items in each case
 - Cumulative distribution function (parameter estimation / history data)
- Stochastic discrete event simulation made in each case
 - Different analysis results (risks, availability, ...) and reports
- Management of improvement tasks of items in one case
 - List tasks -> Prioritize and schedule -> Update model

www.ramentor.com

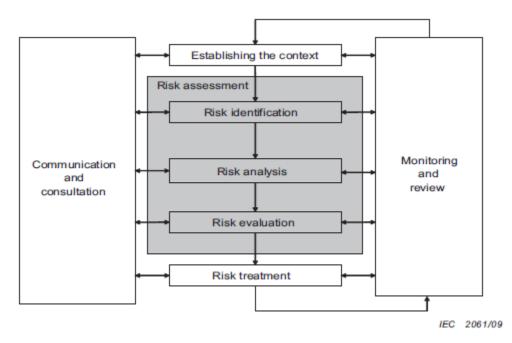
Risk management, Risk assessment, Dependability – Standards and Theory

ISO GUIDE 73:2009 (1/2)

Risk management. Vocabulary

- Risk:
 - Effect of uncertainty on objectives
 - Objectives can have different aspects (such as financial, health and safety, and environmental goals) and can apply at different levels (such as strategic, organization-wide, project, product and process).
- Risk management:
 - Coordinated activities to direct and control an organization with regard to risk

ISO GUIDE 73:2009 (2/2)

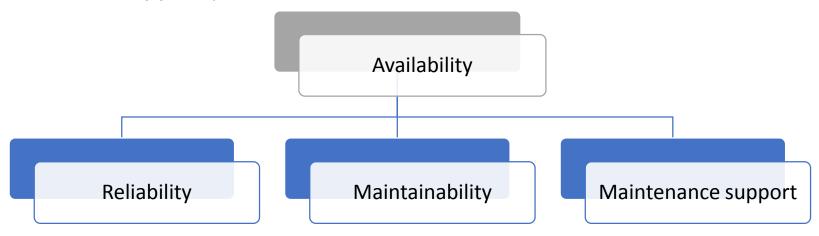

Risk management. Vocabulary

- Risk assessment:
 - Overall process of risk identification, risk analysis and risk evaluation
- **Risk identification**: Process of finding, recognizing and describing **risks**
- **Risk analysis**: Process to comprehend the nature of **risk** and to determine the **level of risk**
- Risk evaluation: Process of comparing the results of risk analysis, with risk criteria to determine whether the risk and/or its magnitude is acceptable or tolerable

EN 31010:2010

Risk management. Risk assessment techniques

Contribution of risk assessment to the risk management process

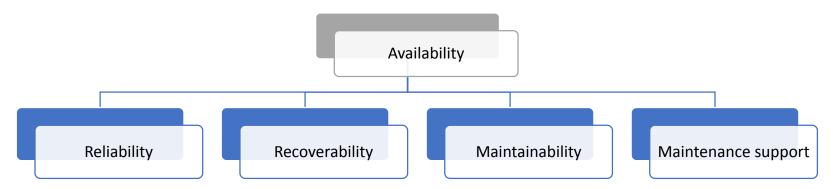


IEC 50(191):1990

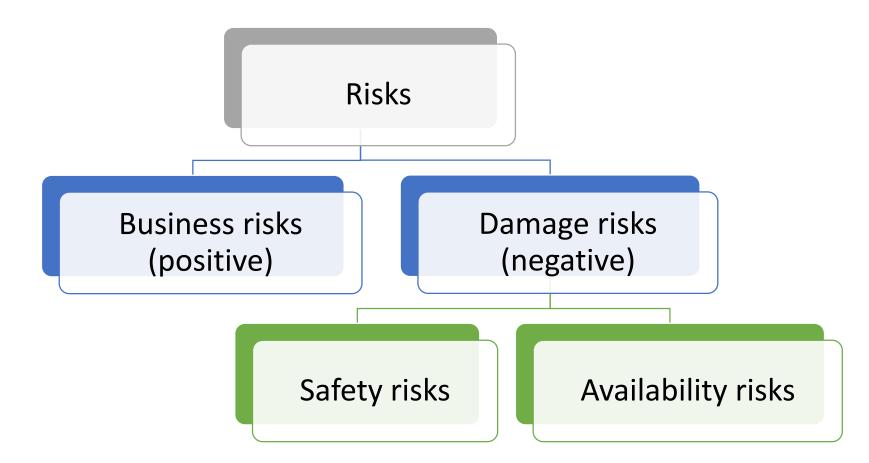
Electrotechnical vocabulary. Dependability and quality of service

• Dependability:

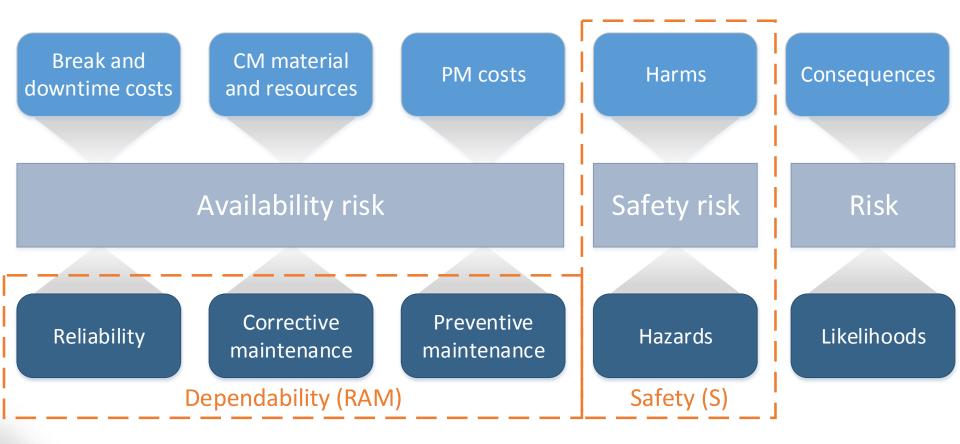
 The collective term used to describe the availability performance and its influencing factors: reliability performance, maintainability performance and maintenance support performance.



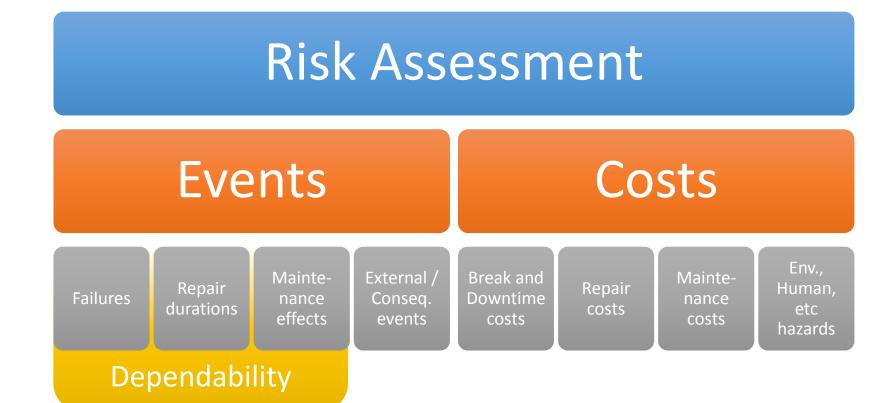
EN 13306:2010 Maintenance. Maintenance terminology


• Dependability:

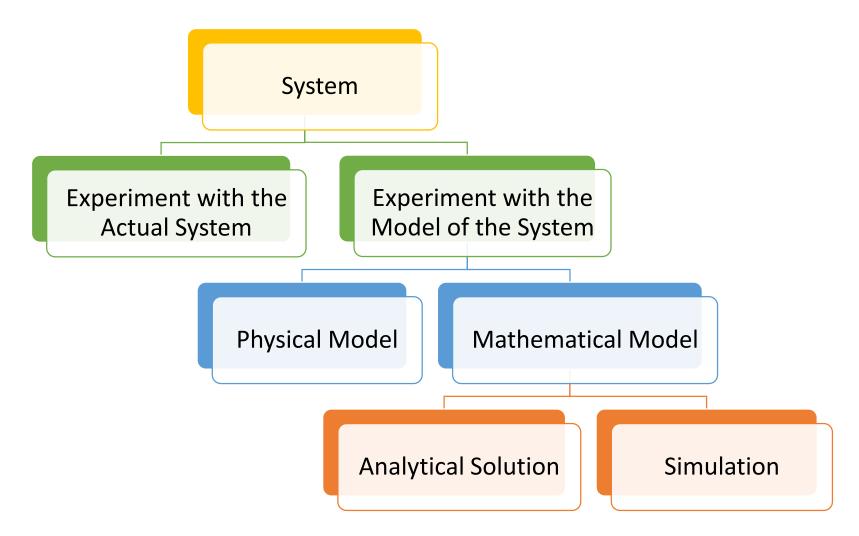
- Ability to perform as and when required
- Dependability characteristics include availability and its influencing factors (reliability, recoverability, maintainability, maintenance support performance) and, in some cases, durability, economics, integrity, safety, security and conditions of use.



Risks – 1/2



Risks – 2/2



Risk Assessment and Dependability

Ways to Study a System

Methods: Tools and Techniques – EN 31010:2010 Risk management. Risk assessment techniques

Qualitative tools and techniques

• Failure modes and effects analysis (FMEA)

Identify the ways in which components, systems or processes can fail to fulfil their design intent. Identifies all
potential failure modes of the various parts of a system, the effects these failures may have on the system, the
mechanisms of failure and how to avoid the failures, and/or mitigate the effects of the failures on the system.

Reliability centered maintenance (RCM)

- Identify the policies that should be implemented to manage failures so as to efficiently and effectively achieve the required safety, availability and economy of operation for all types of equipment.

Root cause analysis (RCA), 5 times "Why?"

- Identify the root or original causes instead of dealing only with the immediately obvious symptoms.
- Hazard and operability studies (HAZOP)
 - Identify risks to people, equipment, environment and/or organizational objectives.
- Check-lists
 - Lists of hazards, risks or control failures that have been developed usually from experience, either as a result of a previous risk assessment or as a result of past failures.

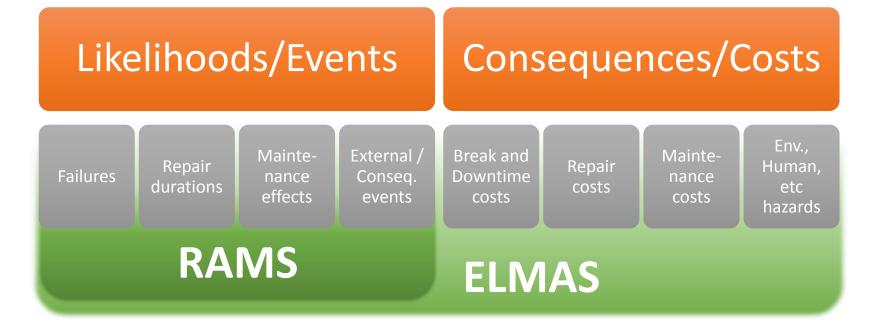
Quantitative tools and techniques

• Fault tree analysis (FTA)

A technique which starts with the undesired event (top event) and determines all the ways in which it could occur.
 These are displayed graphically in a logical tree diagram. Once the fault tree has been developed, consideration should be given to ways of reducing or eliminating potential causes/sources.

• Event tree analysis (ETA)

- Using inductive reasoning to translate probabilities of different initiating events into possible outcomes.
- Monte Carlo simulation
 - For systems that are too complex for the effects of uncertainty on them to be modelled using analytical techniques
- Cause and consequence analysis
 - A combination of fault and event tree analysis that allows inclusion of time delays. Both causes and consequences of an initiating event are considered.
- Failure modes and effects and criticality analysis (FMECA)
 - FMECA extends an FMEA so that each fault mode identified is ranked according to its importance or criticality.



ELMAS – Risk Assessment and RAMS

ELMAS

Event

- Time to Failure, Distribution
- Time to Repair, Distribution
- Maintenance actions
- Break and downtime loss
- Repair Costs
- Hazards
- Usage and stress profile
- External events

Logic

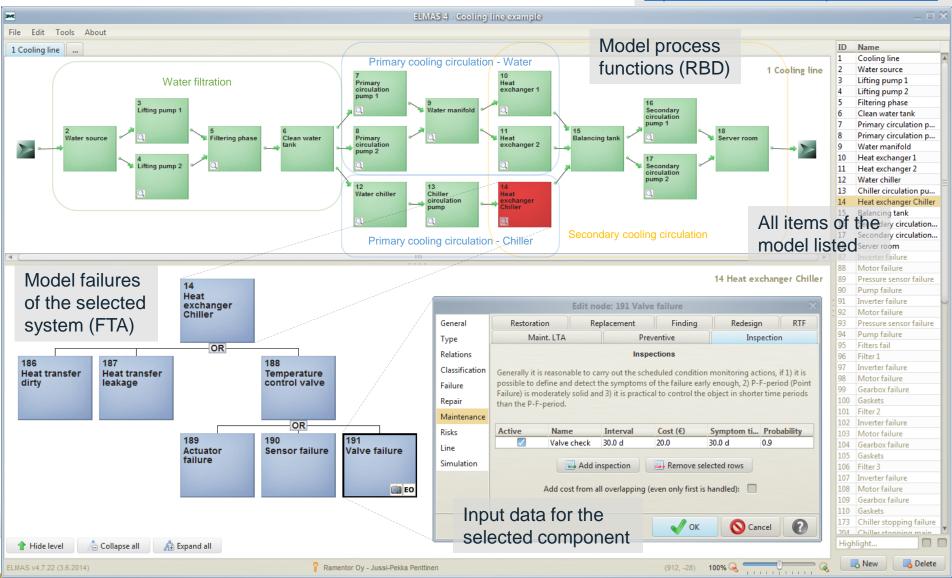
- OR
- AND
- K/N-Voting
- XOR-Exclusive
- Limits
- Conditional probability
- Delays
- Throughput, fuzzy logic
- Dynamic coding

Modeling

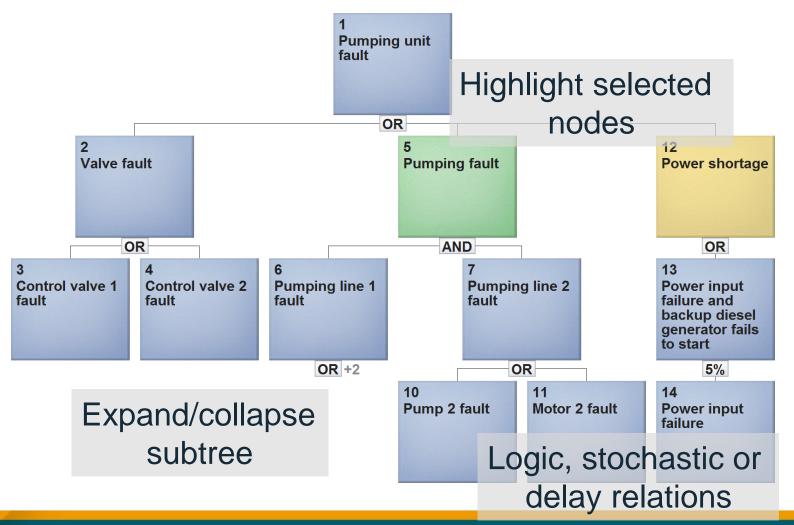
- Fault tree
- Event tree
- Cause
 - consequencetree
- Reliability block diagram
- Process diagram
- Waiting and redundancy
- Buffers
- Failure modes, RCA

Analysis

- Simulation
- Reliability, Availability
- Risk Analysis
- Importance
 measures
- Conditional probabilities
- Spare part consumption
- Resources
- FMEA, Classification, RCM, Decision tree, Criticality


Software

- Graphical user interface
- Excel export and import
- HTML report
- Table summary
- ERP interface
- Project versioning
- Template library
- Search
- Web start


ELMAS 4.7

http://www.ramentor.com/products/elmas/

Modelling of a Fault tree structure

www.ramentor.com

www.ramentor.com

Failure and Repair distribution for root

-	ELI	MAS 4 - Basic Analysis		_ = ×	1
File Edit Tools About					
Fault Tree: 1 Pumping unit fa	ult			ID Name	
		Eault Tr	ee: 1 Pumping unit fault	1 Pumping unit fault 2 Valve fault	
	1		cc. I rumping amenaate	3 Control valve 1 fault	
	Pumping u fault	nit		4 Control valve 2 fault	_
				5 Pumping fault 6 Pumping line 1 fault	
				7 Pumping line 2 fault	-
	OR			8 Pump 1 fault 9 Motor 1 fault	-
2	5		12	10 Pump 2 fault	
Node editor Valve fault		umping fault	Power	11 Motor 2 fault	1
opened for the	Edit node: 3 Control valve 1	Estimates ×	Time t	o failure 🛛 🕅	
General	Time to failure	with various	100%		
selected root	Time to failur	е	90%		
3 Relations	Estimate: Mean time to failure	parameters	80%		
Classification	Estimate: Mean time to failure		70%		1
Failure	Estimate: Mean, At least (5%),	At most (95%)	60%	Cu	umulative
Repair	Mean tin Estimate: Mean, Min, Max, De	viation a	50%	die	tribution
Maintenance			40%	CIE	stribution
Own pages for	Estimate: Exact time to failure Estimate: Rate		30%	fur	nction shown
Failure and Line	History: Time to failure		20%		
Popair data Simulation	History: Usage time		10%		
Repair data Simulation Dynamic	History: Exact time to failure				
	History: Exact moment	Distribution	0% 2a 4a 6a	8 a 10 a 12 a 14 a 16 a	
	🗸 ок		Mean: 3 a D	ev:3 a 🗾 🖁 🖉	
		created from			,
🔓 Collapse all 🛛 🐴 E	cpand all	history data			
		motory data		Highlight	
ELMAS v4.7.21 (14.5.2014)	📍 Ramentor Oy - Jussi-Pekka Penttiner	n (636, 40) 100 9	% 🔍 💶 🖓	New Delete	

Logic, Stochastic and Delay gates

-			EL	MAS 4 - E	asic Analysis				_ = ×
File Edit To	ools About								
Fault Tree: 1 P	upping unit fault							ID	Name
Tault free 1 P	Fault Tree: 1 Pumping unit fault								Pumping unit fault
			1			Fault Tree: 1 Pumping unit fault			Valve fault
								3	Control valve 1 fault
			fault		Node editor			4	Control valve 2 fault
			laun					5	Pumping fault
					opened	l for		6	Pumping line 1 fault
								7	Pumping line 2 fault
			OR		selecte	d date		8	Pump 1 fault
	2				3010010	- gai	10	9	Motor 1 fault
	2 Valve fault			o Pumping	fault		Power	10	Pump 2 fault
	valve lault			umping	lault		shortage	11	Motor 2 fault
			Edit node: 5 Pumping fai	ult	×			12	Power shortage
	General	Tree BI	ock Sub block					13	Power input failure and
Relations page	General	THEE DI	OCK SUD DIOCK			1		14	Power input failure
	Туре		Ga	ate logic	^	-	OR		
opened from	Relations		12				13		
	Gat	Gate type:	AND (all)	(all) TAll ch			Power input	~	
the node editor	Classification		OR (some)			1	failure and	2 2	
	Failure		AND (all)	hildren			backup diesel		
	Repair	Node type	K/N (voting)		Ξ		generator fails to start		
	· ·	General		1 fault					
	Maintenance	General	XOR (exclusive)	2 fault			5%		
	Risks	ocherar	Limits (min/max)	2 roun			14 C+	~~	bactic (50/)
	Line		Priority AND	arents		ault	Power inpu	UC	hastic (5%)
		Node type	Condition (Delay/Duration)			1			ion shown
	Simulation	General	Probability	fault			Iei	a	ION SHOWN
	Dynamic	General	Root	Taun	v		in	+	a atructura
		- (of av	ailable			ue	e structure
			LISU	Jiav	anabie				
			gate	type	Cancel				
			yale	type					
Collapse a	all 🛛 🐴 Expa	and all						Hig	hlight
			111				►	- C-	
ELMAS v4.7.21 (1	4.5.2014)	7 F	Ramentor Oy - Jussi-Pekka Penttine	n	(749, 392) 10	0% 🔍 🚃			New Delete

Dynamic parameters and Coding

		Edit	node: 21 Ba	ckup diesel g	enerato	or 1 running	failure	Own tab	s to define us	sed
	General	Shortcuts	Constants	Parameters	Lists	Basic code	Event Code	paramet	ers and code	S
	Туре	Event simulation code of different situations								
	Relations	//START R								
	Classification		-	<pre>generator is getState() !</pre>			getPrevious	State() &&		
	Failure	<pre>if (GET_NODE("14").getState() != GET_NODE("14").getPreviousState() && GET_NODE("14").getState() == STATE_FAILED) {</pre>								
	Repair		tart is suc							
	Maintenance).getState() Operation();		AIE_OK) {		Freely de	efined Java	
	Risks	}						code wit	n links to	
	Line	-						simulatio	n states	
	Simulation	//STOP RU								
	Dynamic	if (GET_N	ODE("14").	generator is getState() !	= GET_	NODE("14").	getPrevious	State() &&		
Dynamic codi page opened	from	_	"14").getS DE.setSlee	tate() == ST p();	ATE_OK) {				
the node edite	or					√ ок	O Can	icel		

Other node properties

- Maintenance actions, intervals, costs and resources
 - Preventive, Inspection, Restoration, Replacement, Failure finding
- Expenses related to risk analysis (static or stochastic)
 - Break and downtime loss, repair and resource costs, spare parts
- Throughput of a production line
 - Fuzzy logic operations
- Node classification based on selected criteria
 - FMEA, Criticality

Stochastic simulation and results

Profile	Availabi	-	: Simulation ean times Si	Tool tudied period	Studied period from basic res		
Simulation			lures during s		page opened		3
Basic		Studied time per	riod: 10 a			Cumulative	Distribution
Conditional		otudicu time per	100. 100				
Importance	ID	Name	Fa	iled time	Failures	15%	
importance	1	Pumping unit fault	3 0	d 6 h	7.192		
Risks	2	Valve fault	2 0	d 6 h	6.724	12.5%	
Risks 2	5	Pumping fault	43	.1 s	0.006	10%	
	12	Power shortage	1 0	d 21 min	0.465		
ine	3	Control valve 1 fault	1 0	d 3 h	3.351	7.5%	
Classification	4	Control valve 2 fault	1 0	d 3 h	3.376	5%	
	6	Pumping line 1 fault	2 0	d 23 h	6.373		
	7	Pumping line 2 fault	3 0	d 2 h	6.624	2.5%	
	13	Power input failure and b	oackup di 1 d	d 21 min	0.465	0%	
	8	Pump 1 fault	1 0	d 23 h	3.967		2 4 6 8 10 12 14 16 18
	9	Motor 1 fault	23	h 36 min	2.409	- Min (5%)	🛨 Mean 🕂 Max (95%)
	10	Pump 2 fault	2 0	d 28 min	4.09	■ 1 Pumping	unit fault
	11	Motor 2 fault	1 0	d1h	2.537		
	14	Power input failure	22	d 18 h	9.722		Show graph plots
		si	esults fo mulated	node		dis	Imber of failures Stribution shown selected node

www.ramentor.com

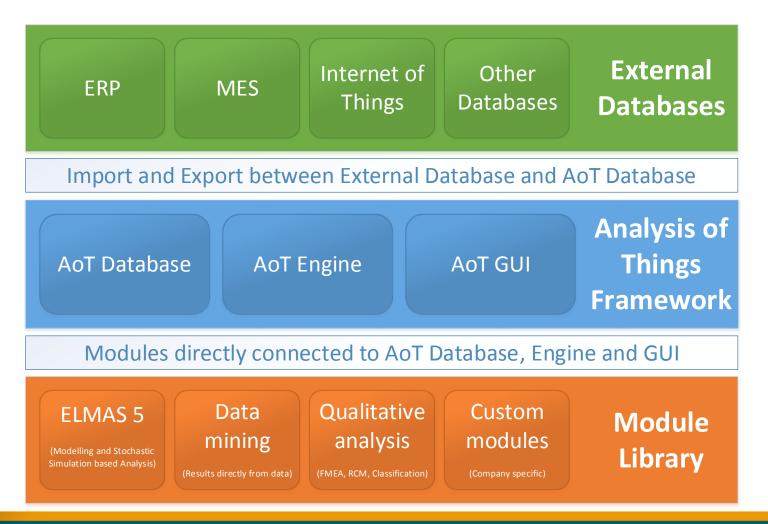
Risk analysis

		Analysis: Simu	ation Tool					sks tab esults
Profile	Entity ris	ks Node risks Subtree risk	s Relative risk	s LCC Co	mb.risks			
Simulation		R	elative risks	page	open	eu		
Basic		Studied time period:	10 a				Cumul	lative Distribution Stack
Conditional							15%	
Importance		Show lines with zero risk:					13 %	
Risks	ID	Name	Downtime (€)	Spare parts (€)	Relative	risk T	12.5%	• • • • • • • • • • • • • • • • • • •
		Pumping unit fault	234 475	49 310	283 784		10%	
Risks 2		Valve fault	161 399	13 454	174 853		10 %	
Line	3	Control valve 1 fault	80 923	6 702	87 625		7.5%	,
Classification	4	Control valve 2 fault	80 489	6 752	87 241			
classification	12	Power shortage	73 079	2 431	75 510		5%	• • • • • • • • • • • • • • • • • • •
	13	Power input failure and backu	73 079	2 431	75 510			
	14	Power input failure	73 079	2 431	75 510		2.5%	
		Pumping fault	36	33 425	33 461		0%	
		Pumping line 2 fault	36	17 060	17 095		0%	500000 1000000 1500000 2000000
		Pumping line 1 fault	36	16 366	16 401			Min (5%) 🔷 Mean 🔷 Max (95%) 📱 Distribution
		Motor 2 fault	13	8 880	8 893			
	-	Motor 1 fault	13	8 432	8 444			Show graph plots
		Pump 2 fault	23	8 180	8 203			Show graph plots
	8	Pump 1 fault	23	7 934	7 957			
		Relative risk = th	e risk of	the				Distribution of risks with
		node itself + the	risk the r	node				min and max estimate
		causes through o	other nod	les				shown for selected node

www.ramentor.com

Other properties

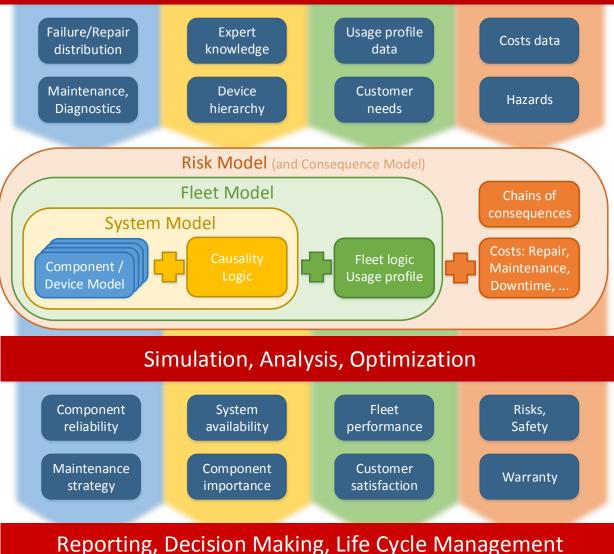
- Import data through Excel tables
- Export HTML or Excel reports
- FMEA, RCM and RCA tools
- Combined Block diagrams, Fault trees and Event trees
- Usage, stress and production profile in simulation
- Conditional and importance results from simulation
- History report simulation
- Show only needed tools and hide unused tools
- Change terms and texts used in the software for each case



Some future plans

- Analysis of Things (AoT) framework with modules for different usages:
 - ELMAS 5, Data mining, Qualitative analyses, Company specific...
- Direct data import/export with external databases
 - ERP, MES, Internet of Things, Company database...
- More possibilities (than change of terms and hide analyses) to tailor GUI and simulation for each case
 - Efficiency for large and complex model simulations (Nuclear)
 - Straightforward simple analyses (PERT, basic fault tree)
- Online module library for different usages/analyses

Analysis of Things (AoT) Framework



www.ramentor.com

Levels with Fleet Model included

www.ramentor.com