Compact accelerators for Radioisotope production:

The AMIT Project

Javier Munilla

Accelerator Technology Unit, Electrical Engineering Division

on behalf of the AMIT Collaboration

24/Nov/2016
OUTLOOK

The AMIT Project: Structure
The AMIT Cyclotron: Requirements
The AMIT Cyclotron: Concept

Magnet design
Cryogenics
Manufacturing
Performed Tests
On-going Tests
Next Steps
OUTLOOK

The AMIT Project: Structure

The AMIT Cyclotron: Requirements

The AMIT Cyclotron: Concept

Magnet design

Cryogenics

Manufacturing

Performed Tests

On-going Tests

Next Steps
The AMIT project: Advanced Molecular Imaging Technologies

SEPT 2010 - DEC 2013 Partners: 10 companies, 14 research labs + Other Collaborations.

Work supported by the Spanish Ministry of Science and Innovation

- Target: Development of the core technology for molecular imaging in Medicine and Biomedicine with special focus in the human brain and in particular in mental diseases

WP1. Development of a compact cyclotron for 11C y 18F single doses production

- CIEMAT is the scientific leader of this cyclotron project
- At the present stage: 3 Scientific programs are funding the project

2014 - 2017 The OPTIMHAC program (Plan Nacional): Beam optimization

2016 - 2019 The CIENTO program (Plan Nacional): Cryogenics and operational optimization

2017 - 2021 The ARIES program (H2020): Integration as a research infraestructure

2014 - 2017 CIEMAT Own Funds
OUTLOOK

The AMIT project

The AMIT Cyclotron: Requirements

The AMIT Cyclotron: Concept

Magnet design

Cryogenics

Manufacturing

Performed Tests

On-going Tests

Next Steps
The AMIT Cyclotron: Requirements

- **MOTIVATION:** To develop a Compact cyclotron able to produce short half-life isotopes for sintering PET radiotracers, including:
 - Capability of producing radiopharmaceuticals on demand:
 - Extending the production of radioisotopes to hospitals and institutes which are not prepared for hosting conventional facilities
 - Disposing a back-up system for producing selected radiotracers at prices that can compete in specific cases with those of standard production centers.

- **CYCLOTRON REQUIREMENTS:**
 - 11C & 18F on-site isotope production
 - Single dose production
 - Minimum size & weight
 - Minimum radiation levels
 - Affordable price (construction & operation)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Dose</th>
<th>Target</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F</td>
<td>40 mCi</td>
<td>Water enriched in 18O</td>
<td>18O$+^{1}$H$^+$ → $n + ^{18}$F</td>
</tr>
<tr>
<td>11C</td>
<td>100 mCi</td>
<td>Nitrogen gas</td>
<td>14N$+^{1}$H$^+$ → 4He$^{++} + ^{11}$C</td>
</tr>
</tbody>
</table>

\Rightarrow Beam requirements: $E > 8.5$ MeV $I > 10\mu$A
The AMIT Cyclotron: Solution

Compact + \(E \approx B^2 R^2 \text{(MeV)} \) ➔ **High B** ➔ **Superconducting Magnet** ➔ **NbTi based** ➔ **Classical Cyclotron**

- (Compared to a resistive magnet, given the same space for acceleration chamber)
- Smallest cyclotron possible for a given \(E \). For a NbTi magnet:
 - 50% less diameter and height
 - About 1/10 cyclotron weight
 - \(x2.5 \) less shielding weight
- Low Power Consumption
- Cryogenics needed
- More maintenance

- Well known technology
- Affordable price
 (for manufacturing and operation)
- Higher improvements up to 4 T
- Such saturation level at 4T gives poor flutter for a conventional isochronous cyclotron
- Classical cyclotron is easier and cheaper while weak focusing is still suitable for this beam
- This solution is valid for such level of energy (8.5 MeV) provided the accelerating voltage is high enough (60 keV)

![Graph showing weight vs. magnetic field strength](image)
OUTLOOK

The AMIT project

The AMIT Cyclotron: Requirements

The AMIT Cyclotron: Concept

Magnet design

Cryogenics

Manufacturing

Performed Tests

On-going Tests

Next Steps
The AMIT Cyclotron: Concept

Magnet
- Low Tc superconductor (NbTi)
- Warm Iron
- 4 T Central Field
- Decreasing field (focusing)
- Low thermal losses

RF System
- One 180° Dee
- 60 kV minimum

Source
- Internal
- Hydrogen > H⁻

Extraction
- Stripping foil
- Targets:
 - Nitrogen gas (¹¹C)
 - ¹⁸ O enriched water (¹⁸F)

Cryogenics
- Closed-loop LHe circuit
- Single commercial cryocooler

Control system, Diagnostics,...
- Robust and Simple operation

Beam Dynamics
- E>8.5 MeV
- I>10µA
OUTLOOK

The AMIT project

The AMIT Cyclotron: Requirements

The AMIT Cyclotron: Concept

Magnet design

Cryogenics

Manufacturing

Performed Tests

On-going Tests

Next Steps
The AMIT Cyclotron: Magnet design

- Electromagnetic design was performed 2D for optimization, 3D for final design

- Working point of cable, Quench analysis developed from previous know-how of Ciemat team

- Thermo-structural design was performed at different levels:
 - from wire to coil approach for stability
 - Magnet behaviour for optimization on shielding and supports
OUTLOOK

The AMIT project

The AMIT Cyclotron: Requirements

The AMIT Cyclotron: Concept

Magnet design

Cryogenics

Manufacturing

Performed Tests

On-going Tests

Next Steps
The AMIT Cyclotron: Cryogenics

- **Thermal design:**
 - LHe flow inside casing, intimate contact to coils
 - Gas He for shield cooling
 - G10 rods for support
 - HTS current leads

- **LHe liquefaction and pumping:**
 - System outside the radiation shielding (Cryogenic Supply System – CSS)
 - Just one cryocooler (1.5 W@4K)
 - Vaporized He used for thermal shield and current leads
The AMIT Cyclotron: Cryogenics

Cyclotron including all the components and the cryogenic supply system
OUTLOOK

The AMIT project

The AMIT Cyclotron: Requirements

The AMIT Cyclotron: Concept

Magnet design

Cryogenics

Manufacturing

Performed Tests

On-going Tests

Next Steps
The AMIT Cyclotron: Manufacturing

- **Magnet**

- **RF**
OUTLOOK

The AMIT project
The AMIT Cyclotron: Requirements
The AMIT Cyclotron: Concept
Magnet design
Cryogenics
Manufacturing
Performed Tests
On-going Tests
Next Steps
The AMIT Cyclotron: Tests done

- Validation of cooling concept for coils:
 - **Same concept for LHe flow inside casing**
 - **Experimental values as expected from calculations**

- Training of AMIT coils in bath-cooling
 - **First quench at critical current, no training**
The AMIT Cyclotron: Tests done

- RF conditioning at ALBA facilities (Barcelona)
 - Nominal power achieved
The AMIT Cyclotron: Tests done

- New Ion Source Testing Facility at CIEMAT for design and fine tuning
 - > 150 µA obtained
- Resistive Magnet available for beam characterization
The AMIT Cyclotron: Tests done

- **CSS (Cryogenic Supply System) at CERN**
 - Stand-alone System characterization
 - **He circuit** as close as possible to real system, including coils and shield mock-ups
 - CSS delivers **1.5W@4.2K** by means of just one commercial cryocooler located some meters away from the cyclotron
 - Some improvements will be included for faster cooling down
OUTLOOK

The AMIT project

The AMIT Cyclotron: Requirements

The AMIT Cyclotron: Concept

Magnet design

Cryogenics

Manufacturing

Performed Tests

On-going Tests

Next Steps
The AMIT Cyclotron: On-going Tests

- New Magnetic Field Measurement Bench at CIEMAT
 - Collaboration of ALBA
 - First phase: low current measurement (resistive mode) Ready
 - Second phase: Nominal current measurement (superconductive mode)
OUTLOOK

The AMIT project

The AMIT Cyclotron: Requirements

The AMIT Cyclotron: Concept

Magnet design

Cryogenics

Manufacturing

Performed Tests

On-going Tests

Next Steps
The AMIT Cyclotron: Next Steps

- At this moment, all components are getting close to final stage
 - Fine tuning still in progress
 - Big effort is being done for perfect behavior of each component prior integration

-Then, integration phase will start:
 - Bunker is ready at CIEMAT

-After commissioning, cyclotron will be functional at final place in CIEMAT

-Here are some rough highlights expected for magnet operation:

 >10µA @ 8.5 MeV
 - Superconducting technology
 - Cyclotron weight ≈ 2.5 t
 - No need for cryogens during operation

- About Manufacturing components:
 - NbTi wire
 - One single cryocooler
 - One turbomolecular pump