RP insertions 2016

MPP Meeting
$3^{\text {rd }}$ June 2016

Mario Deile

Rapidity Reach versus Dispersion

2016 Optics: RP Positions and Diffractive Mass Acceptance Limits (New)

Strategy agreed with MPP:

- During intensity ramp-up before TS1: $15 \sigma+0.5 \mathrm{~mm}$; end-of-fill tests of removing 0.5 mm margin
- After TS1 (if tests successful): 15σ

$$
V_{\mathrm{s}}=13 \mathrm{TeV}, \beta^{*}=0.4 \mathrm{~m}, \alpha_{\mathrm{X}}=370 \mu \mathrm{rad}, \varepsilon_{\mathrm{n}}=3.5 \mu \mathrm{~m} \text { rad, mild orbit bump }
$$

Sector 5-6 (Beam 1):
Roman Pot position: Detector position:

Horiz. $R P$	$\sigma_{\mathrm{x}, \text { beam }}$	$15 \sigma+$ orbit margin $(0.5 \mathrm{~mm})$	$\ldots+$ window + gap $(0.3$ or 0.5 mm$)$	D_{x}	$\xi_{\min }$	$M_{\min }=\sqrt{\xi_{1} \xi_{2} s}$
$210-\mathrm{N}$	$213 \mu \mathrm{~m}$	$3.695 \mathrm{~mm}=17.3 \sigma$	$3.995 \mathrm{~mm}=18.8 \sigma$	-80.0 mm	0.050	650 GeV
$210-\mathrm{F}$	$144 \mu \mathrm{~m}$	$2.660 \mathrm{~mm}=18.5 \sigma$	$2.960 \mathrm{~mm}=20.6 \sigma$	-76.3 mm	0.039	507 GeV
$220-\mathrm{C}$	$120 \mu \mathrm{~m}$	$2.300 \mathrm{~mm}=19.2 \sigma$	$2.800 \mathrm{~mm}=23.3 \sigma$	-75.0 mm	0.037	485 GeV

Horiz. RP	$\sigma_{\mathrm{x}, \text { beam }}$	15σ	$\ldots+$ window + gap $(0.3$ or 0.5 mm$)$	D_{x}	$\xi_{\text {min }}$	$M_{\min }=\sqrt{\xi_{1} \xi_{2} s}$
$210-\mathrm{N}$	$213 \mu \mathrm{~m}$	3.195 mm	$3.495 \mathrm{~mm}=16.4 \sigma$	-80.0 mm	0.044	572 GeV
$210-\mathrm{F}$	$144 \mu \mathrm{~m}$	2.160 mm	$2.460 \mathrm{~mm}=17.1 \sigma$	-76.3 mm	0.032	416 GeV
$220-\mathrm{C}$	$120 \mu \mathrm{~m}$	1.800 mm	$2.300 \mathrm{~mm}=19.2 \sigma$	-75.0 mm	0.031	399 GeV

- Agreed settings:
$15 \sigma+0.5 \mathrm{~mm}$ until TS1, then removal of 0.5 mm margin if demonstrated to be possible
- Insertion in which fills?
$2^{\text {nd }}$ fill of each intensity step, then - if successful - insertions in all subsequent fills
- Insertion at what time in the fill?

2 hours after declaration of Stable Beams in validation fill, then immediately in later fills
\rightarrow Insertions with up to 1824 bunches successfully completed ($L \leq 6.4 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

- Tests of removal of the 0.5 mm margin:
- in addition to orbit stability studies by collim. WG
- End-of-fill tests before TS1:

- tests done in Stable Beams \rightarrow transparent

Removal of 0.5 mm margin to be discussed in CWG+MPP on $3^{\text {rd }}$ June.

BLM Response 2015 and 2016
($20.7 \sigma+0.5 \mathrm{~mm}$ and $15 \sigma+0.5 \mathrm{~mm}$, respectively)

Sector 5-6

Dummy quartz bar removed from E6R5
\rightarrow losses reduced by factor $\sim 1 / 2$ in BLM E6, slight reduction in BLM B6 (that sees no other pot)

Sector 4-5

No dummy quartz bar ever in sector 4-5
\rightarrow configuration unchanged
$\rightarrow 2015$ and 2016 directly comparable
\rightarrow slight increase of losses from E6L5 due to closer distance

- TCL6 @ 20σ instead of $25 \sigma \rightarrow$ slight increase in BLM TCL6, BLM Q6(I30), BLM Q6(E10)
- Almost no increase of losses from box-shaped pots at 210 m (C6, D6)

BLM Response 2016 with and without Margin
$(15 \sigma+0.5 \mathrm{~mm}$ and 15σ)

Sector 5-6

Sector 4-5

Very little effect from removing the 0.5 mm margin !

Vacuum (2016)

Equilibrium pressure after RP insertion:

Sector 5-6

Sector 4-5

Until now: generally better vacuum than in 2015

Vacuum Pressure Rise @ RP Insertion

Most of the pressure rise with lumi is not related to RP insertion.
\rightarrow isolate RP effect by measuring only the pressure step at insertion time

Sector 5-6

Sector 4-5

No dangerous pressure rise in machine vacuum observed.
EOF movements to 15σ have no vacuum response (not shown here).

Example fill 4947 (the record fill), L ~ $3.2 \times 10^{\mathbf{3 3}} \mathbf{c m}^{-2} \mathbf{s}^{-1} @$ RP insertion Time evolution of temperature in 2 pots: lumi @ dump: $1.3 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Slow temperature increase approaching an equilibrium value, then decay with luminosity magnitude unproblematic: up to $12^{\circ} \mathrm{C}$ at RP floor 2.8 mm from beam centre without cooling,
$\sim 1^{\circ} \mathrm{C}$ at detector hybrid (with cooling)

Pot Floor Temperature Rise versus Lumi

Temperature increase relative to RP insertion at maximum or asymptote (Probe on the floor of the cylindrical XRPH.E6L5.B2)

$\Delta \mathrm{T}$ proportional to beam current !

Linear extrapolation to 3000×10^{11} protons / beam:
$\Delta \mathrm{T} \approx 30 \mathrm{~K} \rightarrow$ temperature reached: $\mathrm{T} \approx 25^{\circ} \mathrm{C}+30 \mathrm{~K}=55^{\circ} \mathrm{C}$

Beam Position @ RPs versus Fill

Thanks to David Lucsanyi

Orbit Reproducibility

beam position averaged over each fill, global offset suppressed

$$
\langle x(t)\rangle_{\text {fill }}-\left\langle\langle x(t)\rangle_{\text {fill }}\right\rangle,\langle y(t)\rangle_{\text {fill }}-\left\langle\langle y(t)\rangle_{\text {fill }}\right\rangle
$$

Mean Position (Beam 1)

Mean Position (Beam 2)

Orbit Fluctuations during Fills

Position RMS (Beam 1)

Position RMS (Beam 2)

Conclusions

- BLM response: linear with luminosity, extrapolation to 10^{34} : no problem expected.
- Vacuum pressure: moderately rising with beam current or luminosity, subject to other strong systematic effects, no problems observed.
- Temperature in RP: increasing with luminosity, no problems observed.
In final operation with detectors: active cooling
- No beam instabilities observed
- Test insertions to 15σ without margin:
no problems in observables monitored by RP team

Backup Material

Phase Space of RP Approach (New)

Contour lines: Horizontal RP approach to $\mathrm{N} \sigma_{\mathrm{x}}$ needed to reach rapidity $\mathrm{y}_{\max }=0.5$ for $\mathrm{M}=750 \mathrm{GeV}$

$-D_{x}[m m]$

Mass - Rapidity Space

double arm
light green,
light orange:
acceptance only
in $210-\mathrm{F}$ and $220-\mathrm{C}$

Mass - Rapidity Space: Zoom

$\beta^{*}=0.4 \mathrm{~m}, \alpha_{\mathrm{X}}=370 \mu \mathrm{rad}$, mild orbit bump, RPs @ 15σ
$y=\frac{1}{2} \ln \frac{\xi_{1}}{\xi_{2}}$

Always:
In at least 1 arm all 3 pots are in acceptance!
(up to the TCL mass cut)

Thanks to David Lucsanyi who did the real work !
beam position averaged over each fill, global offset suppressed

$$
\langle x(t)\rangle_{\text {fill }}-\left\langle\langle x(t)\rangle_{\text {fill }}\right\rangle,\langle y(t)\rangle_{\text {fill }}-\left\langle\langle y(t)\rangle_{\text {fill }}\right\rangle
$$

Mean Position (Beam 1)

beam position difference Far - Near for each fill, global offset suppressed

Far - Near, Beam 1

beam position averaged over each fill, global offset suppressed

$$
\langle x(t)\rangle_{\text {fill }}-\left\langle\langle x(t)\rangle_{\text {fill }}\right\rangle,\langle y(t)\rangle_{\text {fill }}-\left\langle\langle y(t)\rangle_{\text {fill }}\right\rangle
$$

Mean Position (Beam 2)

beam position difference Far - Near for each fill,
global offset suppressed

Far - Near, Beam 2

2015: Beam Position Spread (Beam 1)

Position RMS (Beam 1)

Fill

Position Spread (Beam 1)

2015: Beam Position Spread (Beam 2)

Position RMS (Beam 2)

Fill

Position Spread, Beam 2

