

RP insertions 2016

MPP Meeting 3rd June 2016

Mario Deile

Rapidity Reach versus Dispersion

2016 Optics: RP Positions and Diffractive Mass Acceptance Limits (New)

Strategy agreed with MPP:

- During intensity ramp-up before TS1: 15 σ + 0.5 mm; end-of-fill tests of removing 0.5 mm margin
- \bullet After TS1 (if tests successful): 15 σ

п

 $\sqrt{s} = 13$ TeV, $\beta^* = 0.4$ m, $\alpha_X = 370$ µrad, $\epsilon_n = 3.5$ µm rad, mild orbit bump

Sector 5-6 (Beam 1):

		Roman Pot position:	Detector position:			
Horiz. RP	$\sigma_{x,beam}$	15σ + orbit margin (0.5 mm)	+ window + gap (0.3 or 0.5 mm)	D _x	ξ_{min}	$M_{\rm min} = \sqrt{\xi_1 \xi_2 s}$
210-N	213 µm	$3.695 \text{ mm} = 17.3 \sigma$	$3.995 \text{ mm} = 18.8 \sigma$	-80.0 mm	0.050	650 GeV
210-F	144 µm	$2.660 \text{ mm} = 18.5 \sigma$	$2.960 \text{ mm} = 20.6 \sigma$	-76.3 mm	0.039	507 GeV
220-С	120 µm	$2.300 \text{ mm} = 19.2 \sigma$	$2.800 \text{ mm} = 23.3 \sigma$	-75.0 mm	0.037	485 GeV

Horiz. RP	$\sigma_{x,\text{beam}}$	15 σ	+ window + gap (0.3 or 0.5 mm)	D _x	ξ_{\min}	$M_{\rm min} = \sqrt{\xi_1 \xi_2 s}$
210-N	213 µm	3.195 mm	$3.495 \text{ mm} = 16.4 \sigma$	-80.0 mm	0.044	572 GeV
210-F	144 µm	2.160 mm	$2.460 \text{ mm} = 17.1 \sigma$	-76.3 mm	0.032	416 GeV
220-С	120 µm	1.800 mm	$2.300 \text{ mm} = 19.2 \sigma$	-75.0 mm	0.031	399 GeV

RP Insertions 2016

Programme for insertions in intensity ramp-up

- Agreed settings: 15 σ + 0.5 mm until TS1, then removal of 0.5 mm margin if demonstrated to be possible
- Insertion in which fills?

 2^{nd} fill of each intensity step, then – if successful – insertions in all subsequent fills

• Insertion at what time in the fill?

2 hours after declaration of Stable Beams in validation fill, then immediately in later fills

→ Insertions with up to 1824 bunches successfully completed ($L \le 6.4 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$)

- Tests of removal of the 0.5 mm margin:
 - in addition to orbit stability studies by collim. WG
 - End-of-fill tests before TS1:

$$\sqrt[4]{12}$$
 $\sqrt[4]{12}$ $\sqrt[4]{12}$

- tests done in Stable Beams \rightarrow transparent

Removal of 0.5 mm margin to be discussed in CWG+MPP on 3rd June.

p. 4

BLM [mGy/s]

BLM Response 2015 and 2016

(20.7 σ + 0.5 mm and 15 σ + 0.5 mm, respectively)

Sector 5-6

Sector 4-5

- TCL6 @ 20 σ instead of 25 $\sigma \rightarrow$ slight increase in BLM TCL6, BLM Q6(I30), BLM Q6(E10)
- Almost no increase of losses from box-shaped pots at 210m (C6, D6)

BLM Response 2016 with and without Margin

$(15 \sigma + 0.5 \text{ mm and } 15 \sigma)$

Very little effect from removing the 0.5 mm margin !

Vacuum (2016)

Sector 4-5

Sector 5-6

Until now: generally better vacuum than in 2015

Pressure Increase [10⁻¹⁰ mbar]

Most of the pressure rise with lumi is not related to RP insertion.

 \rightarrow isolate RP effect by measuring only the pressure step at insertion time

Sector 5-6

Sector 4-5

EOF movements to 15σ have no vacuum response (not shown here).

Temperature Response

Slow temperature increase approaching an equilibrium value, then decay with luminosity magnitude unproblematic: up to 12 °C at RP floor 2.8 mm from beam centre without cooling, ~ 1 °C at detector hybrid (with cooling)

Mario Deile – p. 9

Pot Floor Temperature Rise versus Lumi

Temperature increase relative to RP insertion at maximum or asymptote (Probe on the floor of the cylindrical XRPH.E6L5.B2)

ΔT proportional to beam current !

Linear extrapolation to 3000 x 10¹¹ protons / beam: $\Delta T \approx 30 \text{ K} \rightarrow \text{temperature reached}: T \approx 25 \text{ }^{\circ}\text{C} + 30 \text{ K} = 55 \text{ }^{\circ}\text{C}$ TOTEM

TOTEM

Thanks to David Lucsanyi

Orbit Reproducibility

beam position averaged over each fill, global offset suppressed

$$\left\langle x(t) \right\rangle_{fill} - \left\langle \left\langle x(t) \right\rangle_{fill} \right\rangle$$
, $\left\langle y(t) \right\rangle_{fill} - \left\langle \left\langle y(t) \right\rangle_{fill} \right\rangle$

Mean Position (Beam 1)

Mean Position (Beam 2)

Conclusions

- BLM response: linear with luminosity, extrapolation to 10³⁴: no problem expected.
- Vacuum pressure: moderately rising with beam current or luminosity, subject to other strong systematic effects, no problems observed.
- Temperature in RP: increasing with luminosity, no problems observed.
 In final operation with detectors: active cooling
- No beam instabilities observed
- Test insertions to 15 σ without margin: no problems in observables monitored by RP team

Backup Material

Contour lines: Horizontal RP approach to N σ_x needed to reach rapidity $y_{max} = 0.5$ for M = 750 GeV

Mario Deile – p. 15

double arm

light green,

10⁴

light orange:

acceptance only in 210-F and 220-C

Mass – Rapidity Space: Zoom

TOTEM

 $\beta^* = 0.4 \text{ m}, \alpha_X = 370 \mu \text{rad}, \text{ mild orbit bump, RPs} @ 15 \sigma$

2015: BPM versus Fill (Beam 1)

Thanks to David Lucsanyi who did the real work !

beam position averaged over each fill, global offset suppressed

 $\langle x(t) \rangle_{fill} - \left\langle \left\langle x(t) \right\rangle_{fill} \right\rangle, \ \left\langle y(t) \right\rangle_{fill} - \left\langle \left\langle y(t) \right\rangle_{fill} \right\rangle$

beam position difference Far – Near for each fill, global offset suppressed

4550

4550

Fill

2015: BPM versus Fill (Beam 2)

beam position averaged over each fill, global offset suppressed

 $\langle x(t) \rangle_{fill} - \langle \langle x(t) \rangle_{fill} \rangle$, $\langle y(t) \rangle_{fill} - \langle \langle y(t) \rangle_{fill} \rangle$

Mean Position (Beam 2)

beam position difference Far – Near for each fill, global offset suppressed

Far - Near, Beam 2

150 200 (mµ] <x> <∆x> (F – N) [µm] 150 100 100 50 50 0 0 -50 -50 -100 RP 210: x(N), x(F) -100 -150 RP 220: x(N), x(F) -200 -150 4350 4400 4500 4550 4350 4400 4450 4500 4550 4450 Fill Fill 200 150 <y> [µm] 150 100 100 50 50 0 0 -50 -50 -100 -100 RP 210: y(N), y(F) -150 RP 220: y(N), y(F) -200 -150 4550 4350 4400 4450 4500 4350 4400 4450 4500 4550

2015: Beam Position Spread (Beam 1)

2015: Beam Position Spread (Beam 2)

Fill