CERN developments of an optical readout for MPGDs

Filippo Resnati (CERN) on behalf of the GDD team

Where to get the light from

Almost the same spectra

Primary

Excitation and ionisation produced by the particle interacting with the gas.

Some dependance with the electric field.

Electroluminescence

Scintillation without charge amplification.

Increase linearly with the field.

Easy in pure noble gases.

Avalanche

Exponential scaling with the field.

Proportional to the charge gain.

The extreme is the visible spark.

CF₄

Admixtures which provide useful scintillation (enough and near the visible range) are rare.

CF₄ is not transparent to the CF₄ de-excitation to ground. What scintillates must be something else: (CF₃*), CF₃+* and CF₄+*

Ar/CF₄ 80/20

Nicely matching the CCD efficiency curve

High charge gain -> high light gain

Light yield comparison
Nal: ~40 ph/keV
GEM at a gain of 10⁵: ~10⁶ ph/keV

Optical readout

Record the light emitted during the Townsend avalanche with a camera: use the detector as a scintillating plate.

Only techniques are new

Parallel mesh chamber filled with Ar/CH₄/TEA 80%/8%/2% seen by an image intensifier and a camera

Muons and delta rays

G. Charpak et al., NIM A258 (1987) 177

Advantages

Simplicity: like taking a picture

Robustness: as a device off-the-shelf

Versatility: several uses and environments

The setup

M = sensor size / image size M ~ 0.1, Ω ~ 5×10^{-4}

This implies:

- large sensor
- low noise
- fast lens
- a lot of light

Camera and lens

QImaging Retiga R6

CCD: 2688x2200 4.54x4.54 um² pixels

ADC: 14 bit

rate: 6.9 fps (20fps with binning)

read noise: 5.7 e⁻ RMS

dark current: 0.0002 e⁻/p/s @ -20° C

trigger: external bulb + others

Navitar

focal length: 25 mm

aperture: f/0.95

Mount: C-Mount

Sensor type: 1" format

X-ray images

X-ray tube with W target at 20 kV - 40 kV at few mA

Charge acquisition (26/10/1998)

Raw data: fast (<1 s) acquisition and no processing time

X-ray images

X-ray tube with W target

Straight out from the camera, not even the flat field correction

X-ray images

Increasing energy:

- X-ray more penetrating
- Worse position resolution (larger charge cloud)

Fluoroscopy

50 ms exposure 10 Hz acquisition

CT and 3D imaging

Image -> Sinograms -> Filtered Back Projection -> 3D image

Fluorescence

What should be expected

W target: bremsstrahlung +

- low energy -> window and cathode
- high energy -> gas

feasible: Cr, Fe, Ni, Cu difficult: Au, Pb

more difficult: Al, Ag

The painting (visible)

The painting (X-rays)

O(1 kHz) in 500 s exposure

Event by event

20

Event by event: X-rays

X-rays from ⁵⁵Fe source

Analysis of single clusters

Spatial resolution improves using the barycentre of the cluster

The spectrum

from CCD images

FWHM at 5.9 keV over 8x8 cm² ~36% before gain uniformity correction 24.7% after gain uniformity correction

Filippo Resnati - MPGD Applications Beyond Fundamental Science - 15 September 2016 - Aveiro

It's Zinc

Possible other application

X-ray crystallography

UV imaging

Neutron imaging

Gamma imaging

- - -

Radiography of a bat and closeup of the GEM holes

Freeze-frame of an X-ray movie of a flying drone

Alphas from ²²⁰Rn decay and its daughter ²¹⁶Po

Cu SS Fe Al Zn Au Ag

Visible picture of a *painting* and its X-ray fluorescence image. Different colours refer to different materials (energy resolved)

Single X-rays from ⁵⁵Fe and the energy spectrum extracted from the images

