Workshop on MPGD Applications Beyond Fundamental Science

First results of a combined fast-neutron & gamma-ray LXe imaging detector with gaseous photomultiplier readout

- I. Israelashvilli^{a,b}, A.E.C. Coimbra^a, D. Vartsky^a, L. Arazi^a, E. N. Caspi^b, A. Breskin^a
- ^a Weizmann Institute of Science, Rehovot, Israel
- ^b Nuclear Research Centre Negev, Beer-Sheva, Israel

Artur Coimbra
Aveiro, Portugal, 12 – 16 September 2016

Goal

Development of a novel method for SIMULTANEOUS imaging and spectroscopy of Fast Neutrons & Gammas

→ Search for hidden explosives and nuclear materials in cargo

Requirements from a modern inspection system

- Explosives (low-Z) in cargo and luggages (>150g).
- Special nuclear materials (high-Z) in trucks, containers (>1kg).
- Large-area scans (>20x160 cm²)
- High detection efficiency (>10%) for γ and fast-n
- Spatial resolution: 5 − 10 mm
- Good discrimination between gammas and neutrons
- Short inspection time → High rate capability

Gamma radiography

- High resolution imaging of shape and density.
- Incapable of distinguishing organic materials of similar density but different chemical composition.
- Discrimination of common high-Z materials (Pb, W) from special nuclear materials
 can be achieved by Dual-Discrete-Energy Gamma Radiography (DDEG) *
- Reaction $^{11}B(d, n+\gamma)$ provides 4.4 MeV and 15.1 MeV gamma as well as quasicontinuous neutron energy spectrum (1 17 MeV).

^{*} M. B. Goldberg, Method and System for Detecting Substances such as Special Nuclear Materials, U.S. Patent 7381962 (2008)

Fast neutron imaging

- Provides sensitive probe to materials rich in low-Z elements.
- Hydrogen, carbon, nitrogen or oxygen principal elements in plastic explosives/narcotics.

 $RDX - C_3H_6N_6O_6$ Ethanol - C_2H_6O

- All military explosives are nitrogen rich
- Fast—Neutron Resonance Radiography (FNRR) * provides elementally resolved images employing different neutron energies, selected to exploit the characteristic neutron cross-section structure (resonances) of low-Z elements.

Pre-requisite: measuring neutron energy

Automatic detection

^{*} D. Vartsky et al., Proceedings of "International Workshop on Fast Neutron Detectors and Applications" PoS(FNDA2006) 064. http://pos.sissa.it//archive/conferences/025/084/FNDA2006_084.pdf

Combined neutron and gamma detector concept

Liquid Xenon scintillator/converter coupled to gaseous photon imaging

detector: a Gaseous Photomultiplier (GPM) *.

- Neutrons: energy selection by time-of-flight (TOF)
- Gammas: pulse height measurements of
 4.4 and 15.1 MeV
- Both detected by the same detector
- LXe contained within "fiber-like" capillaries
- LXe technology:
 mastered cryogenics, scalable, efficient
 - → suits large systems!

L. Arazi et al. JINST 10 (2015) no.10, P10020 arXiv:1508.00410

Converte

Liquid xenon scintillator

- High density (2.85 g/cm3)
- Fast (2ns)
- Cryogenic (-100°C)
- Scintillation light matches CsI-photocathodes:

QE~25% @ 175nm

Scintillation yield *:

Gammas: 20 photons per deposited KeV

Neutrons: 7 photons per deposited KeV (E_{recoil} <10 keV)
9 photons per deposited KeV (E_{recoil} >10 keV)

5cm LXe in capillaries:

High detection efficiencies:

n: ~20% (2-14 MeV)

γ: ~30% (2-14 MeV)

^{*} E. Aprile et al. 2009 Phys. Rev. C79, 045807

Liquid xenon scintillator optimization*

Simulated several concepts of detector in GEANT4

- Disregarding scattering from surrounding materials
- Four configurations were simulated:
 - Plain LXe volume
 - Polyethylene capillaries
 - Teflon
 - Tefzel (contains H₂)

Reduces mean free path of neutrons; Higher efficiency of neutron energy transfer

Parameters:

- Energy deposition spectra (gamma, n)
- Counting/Imaging of scint. photons
- Spatial resolution
- Detection Efficiency

^{*} Israelashvili, I. et al. JINST 10 (2015) no.03, P03030 arXiv:1501.00150

Liquid xenon scintillator optimization*

 FWHM of center of gravity distribution and detection efficiency as a function of energy of impinging neutrons and gammas.

- Reduction of neutron scattering length → spatial resolution significantly improved.
- Capillaries "transparent" to gammas, similar resolution for all materials
- High detection efficiencies
 - ~20% for fast neutrons
 - ~30% for gammas
- Low density capillaries reduces efficiency for gammas by ~10%

^{*} Israelashvili, I. et al. JINST 10 (2015) no.03, P03030 arXiv:1501.00150

WIS Liquid Xenon (WILiX) facility

Schematic of WILiX including GPM assembly with capillaries

GPM*: Triple THGEM/CsI

- 61 hexagonal pads (pixels) electrode
- Low noise readout electronics

^{*} L. Arazi et al. JINST 10 (2015) no.10, P10020 arXiv:1508.00410

^{*} D. Vartsky et al. Nucl. Instrum. Meth. A824 (2016) 240

Triple-THGEM/CsI GPM

- Imaging of UV photons was done using a flashed hydrogen lamp
- Emitted photoelectrons are multiplied by the GPM; signals collected on hexagonal pads
- Low noise electronics for data acquisition

 Fixed collection photoelectron collection efficiency → voltage on first stage constant

- Typical single event
- Color bar represents charge in fC
- Center-of-gravity (CoG) calculated for each event

Triple-THGEM/CsI GPM

- Center-of-gravity 2D histograms for different numbers of photoelectrons, down to single PEs
- FWHM of CoG distributions vs photoelectrons

²⁴¹Am source imaging

Experimental setup

- Spectroscopic ²⁴¹Am alpha source immersed in Lxe
- 5.5 MeV alphas stopped within 40 μm
- PMT used as trigger
- GPM above window

GPM working point

Corresponding to roughly the same gas density as in 1.1 bar at room temperature.

We imaged the deposited active spot with the GPM

²⁴¹Am source: imaging & time resolution

• GPM image:

• Real picture:

Digital radiography plate (Fuji) image

Time jitter of ~1.2 ns
 Approx. 300 photoelectrons/pulse

Position resolution simulations for Gammas

- Simulated resolution (FWHM) of gamma radiation 1.1 15.1 MeV
 - Edge object
 - 3 mm collimated beam
 - Pencil beam
- Detector geometry defined in detail, including surrounding materials.
- Simulated deposited energy, photoelectron spectra and charge spectra after amplification:

Position resolution simulations for Gammas

Simulated resolution (FWHM) of gamma radiation 1.17-15.1 MeV

Experimental Pb object edge imaging

Setup scheme

Edge image

Sub-optimal configuration:

Source very close to detector → large beam spread. Large amount of Compton scattering.

Pads in	% of total events	FWHM [mm]	
cluster		Un – weighted COG	Simulations
5	99.3	12.1	11.5
10	84.2	11.3	11
20	22.3	9.1	9.6

Good agreement with simulations!

Imaging of Pb object AmBe- 30/8/016

Ne:CH4 (95:5), flow=20 sccm, 356 torr, 212K, Gain= 2 2.4 \cdot 10 4 , Pb width=12mm.

Weighted COG

Latest preliminary result with AmBe neutron source mixed with 4.4 MeV gamma

Normalized derivatives

Weighted COG

Un-weighted COG

Pad Threshold	FWHM [mm]		
	Weighted COG	Un – weighted COG	Simulations
5	13	10	
10	13	11	
20	9	9	

Summary

- Large-area robust detector concept, for simultaneous detection of hidden explosives (low-Z, with fast neutrons) and fissile materials (high-Z, with gammas).
- Encompasses efficient fast liquid-Xenon converter-scintillator (plain volume or capillaries), coupled to a UV-sensitive gaseous imaging photomultiplier (GPM) incorporating a CsI-coated triple-THGEM, here with APV/SRS readout.
- Successful operation of the GPM/LXe scintillator, also with capillaries: High sensitivity, fast response, stability.
- GEANT 4 simulations predict good imaging properties for gamma & fast-n + energy resolution for gammas.
- In a sub-optimal configuration, demonstrated position resolution of ~10mm
 FWHM with 1.1 and 1.3 MeV gammas from ⁶⁰Co → agreement with simulations.
- Measurements with energetic gammas and fast neutrons in course.

Thank you!