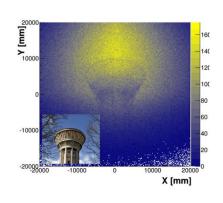
DE LA RECHERCHE À L'INDUSTRIE

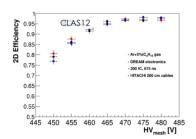

INNOVATION

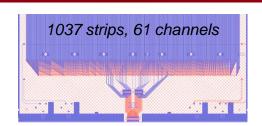
REPUBL OF EGYP MINISTR ANTIQUI

An exotic use of MPGD: muography of Egyptian pyramids

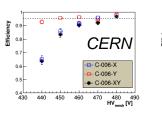
IRFU/SPhN: S. Procureur, S. Bouteille (PhD)

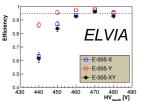
IRFU/Sédi: D. Attié, D. Calvet, P. Magnier, I. Mandjavidze, M. Riallot

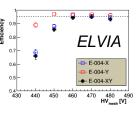

BACKGROUND (1/2)

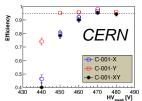


- → development of 50x50 cm² Micromegas with genetic multiplexing
 - Reduction of electronics (price, consumption) by factor of ~15
 - Use of resistive strips to increase S/N and efficiency
 - 2D strip readout
 - CLAS12/DREAM electronics
- → first final prototypes available in 2015 (made @ CERN)




- 1.5 cm drift gap
- ~97% efficiency in 2D
- Ar-Iso-CF₄ (95-2-3) mixture (non flamable)
- 200 micron resolution $(\frac{L/Nchan}{40}!)$
- → know how transfer with ELVIA PCB company

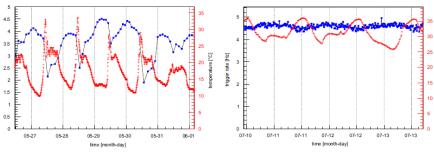




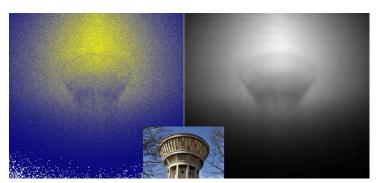
S. Bouteille et al., NIM A 834 (2016), 187 (1st 2D version)

BACKGROUND (2/2)

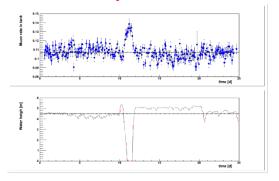
→ building & validation of the first MM-based muon telescope


- Temperature fluctuations from 11 to 43℃
- Online feedback on T (P)
- Self-triggering mode
- Miniaturized electronics box
- 30 W of total consumption (bulb)
- Operated during 3.5 months...

• ... including 1.5 on solar boards + battery



Trigger rate and temperature



w/o T feedback w T feedback

static

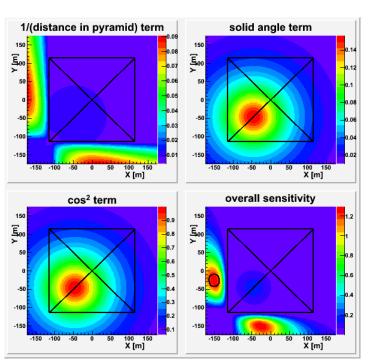
dynamic

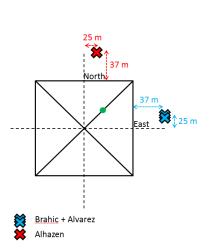
S. Bouteille et al., NIM A 834 (2016), 223

THE SCANPYRAMIDS MISSION

- → Coordinated by Engineering faculty of Cairo & HIP Institute, under authority of antiquity ministry
- → Imaging of 4 Egyptian pyramids with muons, thermal studies and drones
- → Mission started in Oct. 2015 with 2 Japanese teams on muon program
- Emulsions & scintillators
- Only inside pyramids

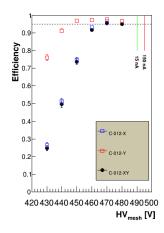
- → Proposition to install MM telescopes outside
- CEA joined the mission on April
- → Construction of 3 new telescopes of new generation
 - 4 detectors / telescope for redundancy
 - 1 FEU with DREAM asics (512 channels)
 - Thermal protection
 - Improved components => less noise for self-trig.
 - Powered by 220V AC or solar boards (35 W)
 - 150 Ah battery with regulator
 - 3G connexion
 - Online data analysis (nano-PC)
 - 2 TB hard disk for each telescope to store raw data
 - 2 B5 bottles for each telescope (T2K gas)
 - Simulation to optimize the sensitivity

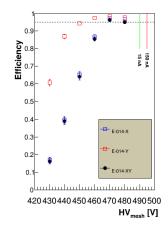

Quite challenging schedule!

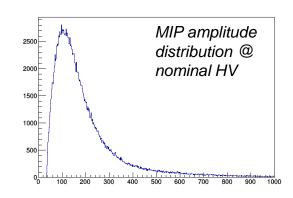


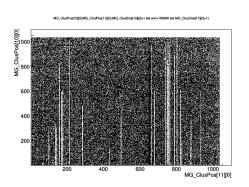
GOAL OF 1ST CAMPAIGN

- → Observe a known cavity on N-E edge to validate the performance
- → Simulation were performed to optimize the sensitivity for this room
 - Distance between room and telescopes (solid angle) (the closer the better)
 - Viewing angle (the higher the better)
 - Ratio of stone and cavity lengths (the further the better)


Already an enormous challenge: detection of a 3 m cavity in 20 m depth rocks, at 150 m distance!!!



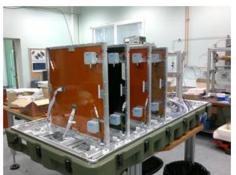

PREPARATION OF TELESCOPES (1/2)



- → Each detector was tested at Saclay before assembly
- Efficiency
- Spatial resolution
- Gas tightness
- → Outstanding commitment of ELVIA who built 2/3 of the detectors (8) in tight schedule
- → All 12 showed good performance, with local defects on some (strip cuts)

PREPARATION OF TELESCOPES (2/2)

→ Assembly at Saclay in fly-cases used for the transport & the acquisition



Snow!

47.1°C (whole setup tested up to 55°C)

Alhazen (n°1)

Alvarez (nº2)

Brahic (n°3)

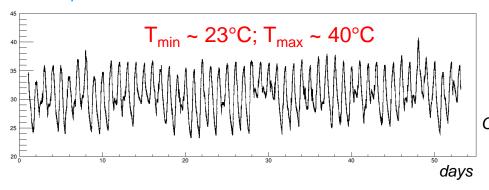
CAIRO PREPARATIONS

→ Check tests after transportation, doublet assembly, final plugs

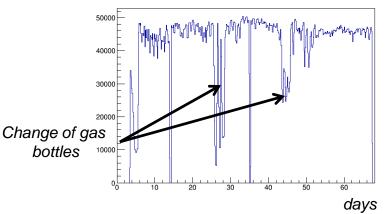
→ Transportation from University to Giza

GIZA INSTALLATION

→ Telescopes under tents for safety: 2 on the East face, 1 on North



DATA TAKING



→ Each detector was operated during 2 to 3 months (gas autonomy)

Temperature evolution

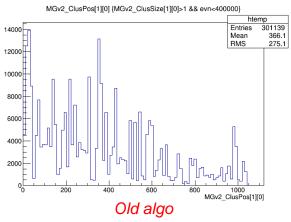
· Number of reconstructed muons with time

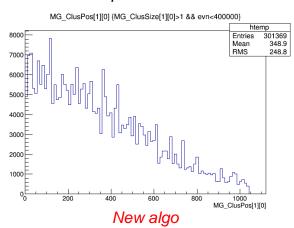
- → self triggering: at least 5 planes out of 8
 - Ensures at least 3 detectors, means signal from both doublets (lever arm)

Relatively stable acquisition (thanks to T,P feedback)

- → alignment performed early June
 - Resolution around 300 microns for perpendicular tracks, less than 3 mm from -40 to +40°
 - 3 mm resolution <=> 1 m uncertainty at 150 m
 - Contribution of MS in telescope, fly-case and air yield a few tens of centimeters at 150 m
- → overall statistics:
 - Alhazen (North): 30.8 million triggers (4.5 Hz)
 - Brahic (East): 24.6 million triggers (4.2 Hz)
 - Alvarez (East): 18.7 millions (3.3 Hz)

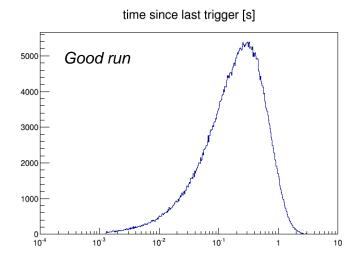
~70% are good muon tracks

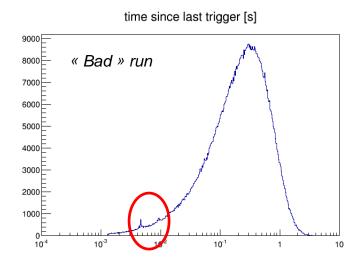



DATA ANALYSIS (IN PROGRESS)

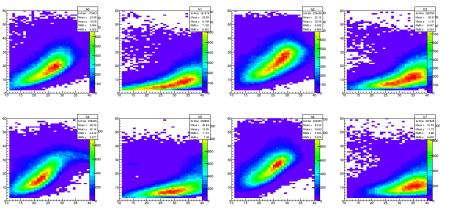
- → Some dead channels
 - Brahic: 5 on a single detector
 - Alvarez: 4 on a single detector, 1 on a second one
- → Reprocessing of raw data with new algorithm (old: biggest cluster search)
 - Convolute the strip amplitude pattern with Gaussian of sigma $\sim N_{chan}/3$
 - · Consider the highest values as cluster seeds
 - Grow the cluster seed allowing gaps with some criteria (based on number of new, unused channels in the cluster)
 - Jump dead channels

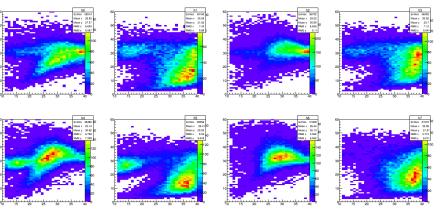
Muon position distribution in problematic Brahic plane



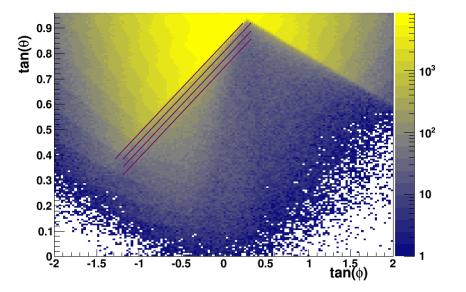


DATA ANALYSIS (IN PROGRESS)




- → Some artefacts in the image are observed (in particular at its center)
 - Largely due to small bursts of noise during some runs

• Also visible in N_{chan} vs TOT plots



ONGOING ACTIVITIES

- → Misalignments appear with time, particularly on Alvarez
 - · Not a day/night effect due to dilatation, but sudden misalignement followed by slow drift in time
 - · Need to understand the origin and re-align without changing direction
- → Image treatment to find potential anomalies
 - Edge detection algorithm to check stability of telescopes in time
 - Slices below the edge at different depths to localize muon excess (or deficit)
- → Compare East and North projections to look for potential similarities

(Geant4 simulation of a perfectly homogeneous pyramid)

CONCLUSION

- → Fascinating experiment adventure
 - Btw, probably the first use of MPGD tracker in Africa (?)
 - Proves that MPGD can have applications really far from our daily work
- → Analysis is still ongoing, results should be soon available

- → Enormous thank to HIP institute, Cairo University...
 - Mehdi Tayoubi
 - Hany Helal, Yasser Elshayeb
- → ... and fantastic local team!
 - Vincent Steiger, Eric Van Laere, Philippe Bourseiller
 - Hamada Anwar, Mostaffa Ezzy, Issam, Turbo, etc.,

