Regression with Gaussian Processes

Saarik Kalia
Professor Daniel Whiteson

CERN

August 9, 2016
Fitting with Fixed Functional Forms

- Many plots in experimental physics use functional forms to fit background curves

\[
f(x) = p_1(1 - x)p_2x + p_4\ln x
\]

Sometimes just guessed, not theoretically well-motivated

Doesn’t work well at high luminosity

Taken from "Search for new phenomena in the dijet mass distribution using pp collision data at \(\sqrt{s} = 8\) TeV with the ATLAS detector"
Fitting with Fixed Functional Forms

- Many plots in experimental physics use functional forms to fit background curves.
- Dijet mass spectrum with $\sqrt{s} = 8$ TeV uses form:
 \[f(x) = p_1(1 - x)^{p_2}x^{p_3} + p_4 \ln x \]

Taken from “Search for new phenomena in the dijet mass distribution using pp collision data at $\sqrt{s} = 8$ TeV with the ATLAS detector.”
Many plots in experimental physics use functional forms to fit background curves.

Dijet mass spectrum with $\sqrt{s} = 8$ TeV uses form

$$f(x) = p_1(1 - x)p_2x + p_4 \ln x$$

Sometimes just guessed, not theoretically well-motivated.

Taken from “Search for new phenomena in the dijet mass distribution using pp collision data at $\sqrt{s} = 8$ TeV with the ATLAS detector”
Fitting with Fixed Functional Forms

- Many plots in experimental physics use functional forms to fit background curves
- Dijet mass spectrum with $\sqrt{s} = 8$ TeV uses form
 \[f(x) = p_1 (1 - x)p_2 + p_3 + p_4 \ln x \]
- Sometimes just guessed, not theoretically well-motivated
- Doesn’t work well at high luminosity

Taken from “Search for new phenomena in the dijet mass distribution using pp collision data at $\sqrt{s} = 8$ TeV with the ATLAS detector”
Gaussian Processes

- Want functionless regression technique
Gaussian Processes

- Want functionless regression technique
- Assume values at nearby data points correlate
Gaussian Processes

- Want functionless regression technique
- Assume values at nearby data points correlate
- For simplicity, assume mean is zero and joint distribution is multivariate normal
Gaussian Processes

- Want functionless regression technique
- Assume values at nearby data points correlate
- For simplicity, assume mean is zero and joint distribution is multivariate normal
- Only need to choose covariances between values at pairs of points
Kernels

- Covariances between points are given by covariance function, or kernel

\[
K(x, y) = Ae^{-\frac{(x - y)^2}{2\ell^2}}
\]

Want amplitude and length scale to vary:

\[
K(x, y) = A(x) \cdot A(y) \cdot \sqrt{\frac{\ell(x)}{\ell(y)}} \cdot e^{-\frac{(x - y)^2}{2\ell(x)^2} + \frac{(x - y)^2}{2\ell(y)^2}}
\]

Choose \(A(x) = Ce^{-x/d}\) and \(\ell(x) = Lx^p\)
Kernels

- Covariances between points are given by covariance function, or kernel
- Common choice is the exponential squared kernel:

\[K(x, y) = Ae^{-\frac{(x-y)^2}{2\ell^2}} \]
Kernels

- Covariances between points are given by covariance function, or kernel
- Common choice is the exponential squared kernel:
 \[K(x, y) = Ae^{-\frac{(x-y)^2}{2\ell^2}} \]

- Want amplitude and length scale to vary:
 \[K(x, y) = A(x) \cdot A(y) \cdot \sqrt{\frac{2\ell(x)\ell(y)}{\ell(x)^2 + \ell(y)^2}} \cdot e^{-\frac{(x-y)^2}{\ell(x)^2 + \ell(y)^2}} \]
Kernels

- Covariances between points are given by covariance function, or kernel
- Common choice is the exponential squared kernel:

\[K(x, y) = Ae^{-\frac{(x-y)^2}{2\ell^2}} \]

- Want amplitude and length scale to vary:

\[K(x, y) = A(x) \cdot A(y) \cdot \sqrt{\frac{2\ell(x)\ell(y)}{\ell(x)^2 + \ell(y)^2}} \cdot e^{-\frac{(x-y)^2}{\ell(x)^2+\ell(y)^2}} \]

- Choose \(A(x) = Ce^{-\frac{x}{d}} \) and \(\ell(x) = Lx^p \)
Kernels

- Covariances between points are given by covariance function, or kernel
- Common choice is the exponential squared kernel:
 \[
 K(x, y) = Ae^{-\frac{(x-y)^2}{2\ell^2}}
 \]
- Want amplitude and length scale to vary:
 \[
 K(x, y) = A(x) \cdot A(y) \cdot \sqrt{\frac{2\ell(x)\ell(y)}{\ell(x)^2 + \ell(y)^2}} \cdot e^{-\frac{(x-y)^2}{\ell(x)^2 + \ell(y)^2}}
 \]
- Choose \(A(x) = Ce^{-\frac{x}{d}} \) and \(\ell(x) = Lx^p \)
- Four parameters \(C, d, L, p \)
Choosing Parameters

- When fitting for background:
 - Set limits on parameter space
 - Choose allowed parameters that maximize the likelihood of observing data

- When fitting for background + signal:
 - For simplicity, assume signals are Gaussian (in practice, use other shapes)
 - Allowed to subtract off Gaussian before fitting
 - Parameters of Gaussian (height, width, mean) are optimized with kernel parameters
Choosing Parameters

- When fitting for background:
 - Set limits on parameter space
 - Choose allowed parameters that maximize the likelihood of observing data
- When fitting for background + signal:
 - For simplicity, assume signals are Gaussian (in practice, use other shapes)
Choosing Parameters

- When fitting for background:
 - Set limits on parameter space
 - Choose allowed parameters that maximize the likelihood of observing data
- When fitting for background + signal:
 - For simplicity, assume signals are Gaussian (in practice, use other shapes)
 - Allowed to subtract off Gaussian before fitting
 - Parameters of Gaussian (height, width, mean) are optimized with kernel parameters
Quality Metrics

- We need a method that is flexible enough to fit the background, but rigid enough not to fit a signal
- Two measures of effectiveness:

 χ^2 value = sum of squares of statistical fluctuations
 Good value is approximately equal to degrees of freedom
 Can also look at fluctuations at each point individually
 Inject signals of varying heights, and compare to fitted signals
 Should exhibit linear relationship
Quality Metrics

- We need a method that is flexible enough to fit the background, but rigid enough not to fit a signal
- Two measures of effectiveness:
 - χ^2 value = sum of squares of statistical fluctuations
 - Good value is approximately equal to degrees of freedom
 - Can also look at fluctuations at each point individually
Quality Metrics

- We need a method that is flexible enough to fit the background, but rigid enough not to fit a signal
- Two measures of effectiveness:
 - χ^2 value = sum of squares of statistical fluctuations
 - Good value is approximately equal to degrees of freedom
 - Can also look at fluctuations at each point individually
 - Inject signals of varying heights, and compare to fitted signals
 - Should exhibit linear relationship
Results

Background fit and significances ($\chi^2 = 60.16$ for 62 d.o.f.)
Results

Fit and significances with $N = 1000$ signal at 3000 GeV
(Fitted signal of $N = 1042$, $\chi^2 = 57.89$ for 59 d.o.f.)
Results

Comparison of injected and fitted signals at 3000 GeV
Future Research

- More tests of effectiveness:
 - Test how well background-only fit will fit background+signal
 - Test on perturbations of data/other data sets
- Test against existing methods
Acknowledgements

I’d like to thank:

- Daniel Whiteson and University of California, Irvine for providing me with this project and mentorship
- University of Michigan for organizing this program
- National Science Foundation for funding my work
Getting Close with Fellow Summer Students