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Introduction

u Working with the CMS collaboration

u Focus on MSSM Higgs to Tau Tau decays

u Using simulated data to evaluate sensitivity to multiple MSSM Higgs masses

How does machine learning perform relative to typical cuts?

How can we use this information to improve the analysis?
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Boosted Decision Trees

u Two algorithms to optimize:

u scikit-learn

u XG Boost

u XG Boost tends to perform 
slightly better.
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Evaluating Performance:
AMS

𝐴𝑀𝑆 = 	   2( 𝑠 + 𝑏 + 𝑏+ log
𝑠

𝑏 + 𝑏+
− 𝑠)

u s = true positive rate

u b = false positive rate

u br = regularization term (set to 10)
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Training Variables
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u mT

u N jets

u meT pT

u pT higgs

u VBF mjj

u VBF deta

u VBF N central

u L2 pT

u L1 pT

u SVFIT mass

u SVFIT transverse mass

u delta phi L1 L2

u delta eta L1 L2

u mT leg 2

u delta phi L2 meT

u delta phi L1 meT

u mvis

u mT total



Simple Cuts:
SVFIT Transverse Mass
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Simple Cuts:
mT total
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AMS: 3.15 (290 GeV)
AMS with mT < 40 cut: 4.01 (280 GeV)

AMS: 3.56 (450 GeV)
AMS with mT < 40 cut: 2.72 (390 GeV)
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MVA Results:
Full 18 Variable Training
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MVA Results:
Full 18 Variable Training

9

3.40

4.11

3.15

4.01

4.54

3.33

2.69

3.56

2.72

4.00

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

SVFIT transverse 
mass

SVFIT transverse 
mass + mt cut

mt total mt total + mt cut XGBoost 18 Var 
Training

A
M

S

500 GeV 1000 GeV

mT < 40 GeV cut performs well for 500 GeV Higgs 



MVA Results:
Full 18 Variable Training
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MVA Results
3 Variable Training

u Tested ~100 combinations of three training variables to find those that 
performed best 

u Best combination: mT, L2 pT, SVFIT mass

u Best combination without an SVFIT variable: mT, mvis, mT total
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MVA Results
3 Variable Training
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Summary

500 GeV Higgs
u Full 18 variable training performs 

better than cuts

u Three variable trainings perform 
comparably to a cut on SVFIT 
transverse mass with a cut on mT

u Cuts on mT tend to improve 
sensitivity

1000 GeV Higgs
u Full 18 variable training performs 

better than cuts

u Three variable trainings perform 
comparably to a single cut on mT
total

u Cuts on mT consistently worsen 
sensitivity
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How can we use this information to improve the analysis?



Special thanks to the NSF, without which 
this internship would not be possible.
Also thank you to Junjie Zhu, Emanuel Gull, Steven Goldfarb, and Jennifer Roloff. 

14



15


