Particle trajectory visualization and identification with Timepix detectors

Jessica Flores1, Stephanie Baines2 and Ameir Shaa3

1Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
2School of Physics and Astronomy, The University of Manchester, United Kingdom
3Department of Physics and Applied Physics, Nanyang Technological University, Singapore

Supervisors: Jim Pinfold, Albert de Roeck, Tom Whyntie
MoEDAL experiment

- Monopole and other exotics detector at the LHC
- Designed to search for manifestations of new physics signified by highly ionizing particles (HIPs)
- Seeks to answer fundamental questions surrounding the existence of monopoles, dark matter and extra dimensions
- Key player in the search for new fundamental symmetries of nature, alternative mechanisms of mass generation, etc.
- In essence, this experiment aims to trap these long-lived HIPs and take photographic evidence of these particles [1].

[1] James L Pinfold, *The MoEDAL Experiment at the LHC*, Physics Department, University of Alberta, EDP Sciences, DOI: 10.1051 20147100111
Timepix detector

- Measures the radiation deposited by passing particles
- 3 modes on readout electronics [1] : Medipix (photon counting), TimePix (time of arrival of photons in detector medium), and time-over-threshold (ToT) (radiation visualization)
- Relies on silicon based semiconductor detector chips to track particle events -> array of semiconductor chips can be represented in an image form

Timepix detector

- Activated chips return count values. A group of activated sensor chips adjacent to each other are known as clusters, and there is a systematic approach to classifying the clusters to identify which particle caused those clusters.
- Each type of particle will leave a distinct pattern of deposited radiation as it passes through (depends on its mass, charge and unique interactions with external EM fields).
Previous Works

● have sought to classify the particles and interactions that appear in the Timepix detector using the shapes of clusters of activated semiconductor chips.

● classification of such clusters was performed by researchers in the Langton Star Centre as part of CERN@school, in an activity similar to the Juggernaut project of the LHCb collaboration, which uses the Zooniverse’s Galaxy Zoo technology.

● With the first algorithm from Report 1 (J. Flores & A. Shaa June 2016) for cluster classification, there were difficulties in differentiating between SW, brancher and crossover clusters (more on cluster types later).
Project goals

- We offer insight into a computerized method of cluster classification, developed for fast identification and processing of large data sets into six main cluster categories.
- This process is intended to precede the distribution of clusters to participants in a Zooniverse type project for meticulous identification for the sake of the MoEDAL experiments research, and improved student learning within the CERN@school framework.
Cluster classification: Clusters and Pixels

- Clusters define distributions of deposited energy in the TimePix detector and can be treated as an array of pixels.
- These arrays or images can be represented by matrices A_{ik} in which the indices represent spatial coordinates (i,k) each associated with a count C or pixel value.
Cluster variables

- To differentiate between clusters, some topological cluster variables were extracted from existing CERN@School cluster analysis code [1].
- Topological cluster variables [2] included size, counts, number of inner/edge pixels, aspect ratios, center of cluster, radius, density, linearity, horizontal/vertical neighboring pixel distance, and chi-squared value (for evaluation of the goodness of fit).

[1] CERN@School GitHub, Queen Mary University, London
Cluster Types

BOXY

BRANCHER

LOOPER

CURVED

SLUG

SW

STRAIGHT

CROSSOVER
Cluster Sorting Algorithm
Results

• Efficiency from Report 1 (Jessica Flores & Ameir Shaa June 2016)
 \[E_{\text{eff}} = 0.35 \]

• Using new and improved algorithm,

 \[E_{\text{eff}} = 0.85 \]

This must be tested against a larger data sample and for sample bias in selection cuts!
Summary

• The algorithm implemented within Python sorts clusters into 6 categories.
• Categories were inherited from the work of the CERN@School project [1]
• The presented cluster sample was initially sorted manually into a category
• The algorithm was written to reflect this manual selection using topological properties of clusters

Summary and Moving Forward

- The efficiency of the algorithm: $E_{\text{eff}} = 0.85$

- Algorithm must be tested against larger data samples to ensure it is not biased by characteristics of small data sample

- More data has been provided and will be analyzed with this algorithm.
Moving Forward

• Will continue to improve algorithm to classify clusters with more efficiency.
 – Biggest challenges: differentiating crossovers from branchers -> will look into junction detection algorithms (have already been implemented in ImageJ but need to be implemented in OpenCV for us to be able to use this method).

• Have worked on MoEDAL simulations for the past month
 – Looking at phase space and spatial distributions of monopoles generated in simulations and spatial distribution of monopole hits in MMT detector (10,000 event simulations with 4000 GeV beam energy)
 • Have varied monopole mass (200-500 GeV), charge (1-6 gD) and spin (0 and \(\frac{1}{2} \))
 • Still in the process of understanding the results of correlation analyses of simulation output
 • Involves becoming more familiar with Gauss simulations, MoEDAL software packages, Geant4, MadGraph and ROOT (special thanks to Matti Kalliokoski and Daniel Felea for helping with this)
Cultural Experiences

THANK YOU!

… Questions?