Correcting Detector Efficiency Effects in Event-by-Event Net-Proton Fluctuations

Michael Peters Alice Ohlson Alexander Kalweit

CERN

August 10, 2016

Introduction

 Fluctuations of conserved quantities Q_i (charge, baryon number, strangeness, etc.) related to QGP thermodynamic susceptibilities (aka statistical cumulants):

$$\langle \delta Q_i \delta Q_j \rangle = V T \chi_{ij}$$

$$\chi_{ij}^{(n_i,n_j)} = \frac{1}{VT} \frac{\partial^{n_i}}{\partial (\mu_i/T)^{n_i}} \frac{\partial^{n_j}}{\partial (\mu_j/T)^{n_j}} \log Z$$

- Near the QGP critical point, susceptibilities deviate significantly from baseline
- Identifying QGP using net baryon-number susceptibilities: $\chi_\mu^{(4)}/\chi_\mu^{(2)}=1$ for hadronic matter and 1/9 for QGP

- Problem: Detector imperfections make measuring net-proton cumulants difficult
- Objective: Simulate detector efficiency effects and attempt to correct for them
- Built simple detector simulation ("toy model")
- Applied and compared various correction methods

Simple Correction

- Scale measured multiplicity by ϵ_p and $\epsilon_{\overline{p}}$
- Not expected to work, used as benchmark

Accuracy: Bootstrap Error 100F Cumulant Value * Physics 90F 80 Simply Corrected 70 60 50 40 30 20 10 2 3 4 5 6 Cumulant Order

Method

- Method for recovering cumulants developed by A. Bzdak, V. Koch, Phys. Rev. C 044904 (2012)
- Assume binomial losses ε_p, ε_{p̄} (i.e. fixed probability of not finding a track)
- True cumulants K_n given in terms of measured factorial moments f_{ik} of p and p̄ multiplicity distributions:

$$f_{ik} = \sum_{n_1=i}^{\infty} \sum_{n_2=k}^{\infty} p(n_1, n_2) \frac{n_1!}{(n_1 - i)!} \frac{n_2!}{(n_2 - k)!}$$

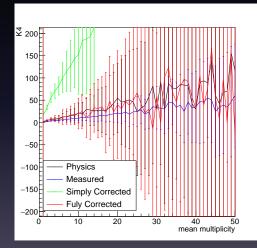
Baseline Results

- Accurately reproduces first four cumulants, even with more realistic simulations added (track-merging error, uncertainty in efficiency)
- Uncertainty grows with cumulant order

Accuracy: Bootstrap Error Cumulant Value 20 10 * I (**** -10 -20 Physics Measured -30Simply Corrected -40Fully Corrected -50 Cumulant Order

Multiplicity Dependence

- Mean multiplicity scan for K₄
- Uncertainty also grows with multiplicity (small errors propagate more)



p_T Dependence

- *p_T* dependent efficiency violates assumption of method
- Global correction is unable to return correct cumulants under p_T dependent efficiency
- Another method needed

Accuracy: Bootstrap Error Cumulant Value 00 00 00 00 20 10 * (× -10 -20 Physics Measured -30Simply Corrected -40Fully Corrected -50 Cumulant Order

Method

Extends global method by introducing "local factorial moments":

$$a_{ik}(x_1, \dots, x_i; \overline{x}_1, \dots, \overline{x}_k) =$$

$$\langle n(x_1)[n(x_2) - \delta_{x_1, x_2}] \dots [n(x_i) - \delta_{x_1, x_i} - \dots - \delta_{x_{i-1}, x_i}]$$

$$\overline{n}(\overline{x}_1)[\overline{n}(\overline{x}_2) - \delta_{\overline{x}_1, \overline{x}_2}] \dots [\overline{n}(\overline{x}_k) - \delta_{\overline{x}_1, \overline{x}_2} - \dots - \delta_{\overline{x}_{k-1}, \overline{x}_k}] \rangle$$

 Recover original factorial moments using sum over all permutations of bins:

$$f_{ik} = \sum_{\sigma} a_{ik}$$

Preliminary Results

- Only 2 multiplicity bins
- Computational intensity means normal trials are uncomputable for now

No.	Physics:	Measured:	Simple Corrected:	Full Corrected:
1	-0.3734	-0.3714	-0.377695	-0.7428
2	1.14477	1.00966	2.11581	2.76182
3	0.253036	0.160996	4.60072	-4.01797
4	-0.786494	-0.489728	9.24985	11.4679
5	-0.687891	-0.143919	-25.1198	44.1366
6	2.24385	0.9096	-347.485	-223.563
4/2	-0.687031	-0.485042	4.37178	4.15231
6/2	1.96008	0.900895	-164.233	-80.9477

Ratio Correction

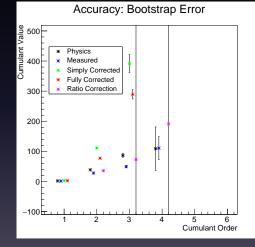
Method

- Assume ratio between cumulants is independent of underlying distribution
- Measure ratio for Poisson statistics
- Apply ratio to non-Poisson statistics (here, artificially heavy tail)

Ratio Correction

Results

- Already used, due to computational simplicity
- Very wide variance, very quickly
- Maybe underlying assumptions are wrong?



Efficiency Flattening

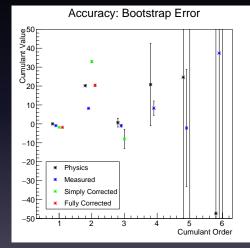
Method

- Assume prior knowledge of form of p_T dependence
- After data is taken, forcibly reduce efficiency at all p_T to minimum value
- Regain binomial efficiency (and global correction) at the cost of statistics

Efficiency Flattening

Results

- Limited success
- Causes under investigation



Conclusion

- Global correction is accurate for first 4 cumulants assuming no p_T dependence
- Local correction may be accurate if at some point it becomes computable
- Puzzling results:
 - Ratio correction (expected to do poorly) outperformed efficiency flattening (expected to do well)
 - Possibly other assumptions on efficiency flattening, e.g. forcing of Poisson behavior

Thank You!



Examples:

$$K_1 = \frac{\langle n_p \rangle}{\epsilon_p} - \frac{\langle n_{\overline{p}} \rangle}{\epsilon_{\overline{p}}}$$
$$K_2 = N - K_1^2 + F_{02} - 2F_{11} + F_{20}$$

$$K_{4} = N - 6K_{1}^{4} + F_{04} + 6F_{03} + 7F_{02} - 2F_{11} - 6F_{12} - 4F_{13} + 7F_{20} - 6F_{21} + 6F_{22} + 6F_{30} - 4F_{31} + 4F_{40} + 12K_{1}^{2}(N + F_{02} - 2F_{11} + F_{20}) - 3(N + F_{02} - 2F_{11} + F_{20})^{2} - 4K_{1}(K_{1} - F_{03} - 3F_{02} + 3F_{12} + 3F_{20} - 3F_{21} + F_{30})$$

• Where:

$$F_{ik} = \frac{f_{ik}}{\epsilon_p^i \epsilon_{\overline{p}}^k} \qquad N = \frac{\langle n_1 \rangle}{\epsilon_p} + \frac{\langle n_2 \rangle}{\epsilon_{\overline{p}}}$$