

CERN-RRB-2006-070

ATLAS Resources Review Board, October 23, 2006

For RRB to approve

Proposals for In-Kind Contributions and Status of the ATLAS Common Projects and Construction Completion

Introduction

The ATLAS management, supported by the ATLAS Executive and Collaboration Boards, kindly invites the RRB to <u>approve</u> new in-kind contributions and to <u>take note</u> of the overall status of the ATLAS Common Projects and Construction Completion (Category-A).

he present document has two parts. The first concerns proposals for new inkind contributions to the Common Projects (CP) and Construction Completion Category-A (CC-A) items for RRB approval. The second part gives the present status of the contributions made to CP and CC-A. The CP items are described in the construction MoU (RRB-D 98-44 rev.) and the CC-A items in the ATLAS Completion Plan (CERN-RRB-2002-114, Annex 1). The RRB is invited to take note of the overall status.

	1. Proposals for New In-Kind Contributions
PROPOSAL	
ELEMENTS	
Being Finalized	There are new proposals for new in-kind contributions as well
Adjustments	as adjustments to previously approved in-kind contributions.

1. Offers being finalized (Action: RRB to approve)

1.1 Rack cabling and cooling work (CC: 21 kCHF, Poland)

The cabling of racks and installment of the cooling systems for the racks is included in the ATLAS cost to completion budget. Poland has available skilled technical teams for such tasks and is willing to provide the related work package as an in-kind contribution. This work is included in the cost to completion.

1.2 Safety system (CC: 11 kCHF, Portugal)

As part of the overall safety system in the ATLAS cavern, a sophisticated system is being installed for identifying the presence of people in the cavern as well as monitoring their movements there. The system is known as FPIAA (Finding People Inside ATLAS). LIP has long-term expertise in this technology domain as is willing to

contribute one work package as an in-kind contribution. The cost of this system is included in the ATLAS cost to completion budget.

2. Adjustments of previously agreed in-kind contributions (Action: RRB to approve)

2.1 Detector Support Structures (CORE: - 140 kCHF, JINR)

In October 2000, the RRB approved an in-kind contribution of 1.0 MCHF from JINR to the so-called 'Feet & Rails' structures. Following changes in the JINR deliverables, as well as changes in the scope of the work sharing responsibilities between Russia, JINR and ATLAS, the JINR contribution was reduced by 400 kCHF in October 2001. As the project is now finished and the financial reports completed, the overall cost for JINR deliverables is 140 kCHF less than forecasted. Therefore, the revised CORE value for JINR deliverables is to be adjusted to 460 kCHF.

STATUS OF	2. Status of CP and CC-A Contributions			
COMMON PROJECT				
CONTRIBUTIONS				
General Description	The ATLAS Management invites the RRB to <u>take note</u> of			
Annex 1: Global Summary	the status of the ATLAS Common Project and			
Annex 2: List of In-Kind	Construction Completion (Category-A) contributions.			
Contributions to CP&CC	The ATLAS Common Projects (CP) are financed by			
contributions from the Funding Agencies in proportion to their commitments to				
deliverables to system/sub-detector construction with a minimum cash contribution				
of 100 kCHF per collaborating institution to the ATLAS baseline construction budget.				

The CP contributions are calculated on the basis of the expected total contributions by the Funding Agencies to ATLAS (c.f. Annex 8 of the Memorandum of Understanding, ATLAS RRB-D 98-44 rev.).

ATLAS CP contributions are made either in kind or by cash contributions to the Common Fund, the latter one including the minimal cash contribution in form of the membership fee covering the time period of 1996 – 2003.

The Construction Completion for common items (CC-A) is to be financed by the Funding Agencies in proportion to their MoU commitments to deliverables to system/sub-detector construction. The list of these common items is provided in the approved ATLAS Completion Plan (CERN-RRB-2002-114, Annex 1). These costs amount to 35.6 MCHF. To date, new commitments over and above those to the CP add up to 31.1 MCHF. The funding of the CC-A includes a minimum cash contribution of 37.5 kCHF per collaborating institution. This represents an extended

annual membership fee for three years from 2004 to 2006, as approved by the RRB in October 2002.

The attached Table (**Annex 1**) shows the status of the committed CP and CC-A contributions as of **August 31, 2006**, including advance cash contributions. The inkind contributions already allocated are listed by Funding Agency in **Annex 2**.

Status of Contributions to Common Projects and Construction Completion by Funding Agency

Current commitments to CP baseline and CC-A (in kCHF)

actual situtation on 31.08.2006

new in-kind proposals

Funding	original	current	in-kind	cash	m.s.	total	% of	in-kind	total	% of
Agency	CP	CC-A	contrib.	contrib.	contrib.	contrib.	CP+CC-A	contrib.	contrib.	CP+CC-A
	committee	committed					committed			committed
1			,	•						
Argentina	0	0	0	0	0	0.0		0	0	
Armenia	100	38	0	0	105.0	105.0	76%	0	105.0	76%
Australia	1100	75	250	300	275.0	825.0	70%	0	825.0	70%
Austria	250	52	200	14	137.5	351.0	116%	0	351.0	116%
Azerbaijan	100	38	0	0	120.0	120.0	87%	0	120.0	87%
Belarus	200	75	0	0	192.5	192.5	70%	0	192.5	70%
Brazil	100	38	0	0	75.0	75.0	54%	0	75.0	54%
Canada	6600	1139	3360	1128	962.5	5450.5	70%	0	5450.5	70%
China NSFC+MSTC	440	69	0	31	137.5	168.5	33%	0	168.5	33%
Czech Republic	600	120	315	7	412.5	734.5	102%	0	734.5	102%
Denmark	1400	38	200	1100	137.5	1437.5	100%	0	1437.5	100%
Finland	100		0	0	100.0	100.0	100%	0	100.0	100%
France IN2P3	17000	2935	12465	5805	750.0	19020.0	95%	0	19020.0	95%
France CEA*	5800	1038	5420	1280	137.5	6837.5	100%	0	6837.5	100%
Georgia	100	38	0	0	125.0	125.0	91%	0	125.0	91%
Germany BMBF	14200	2452	14115	1321	1237.5	16673.5	100%	0	16673.5	100%
Germany DESY	0	0	0	0	0.0	0.0		0	0.0	
Germany MPI	3300	570	2175	1645	137.5	3957.5	102%	0	3957.5	102%
Greece	750	113	260	0	375.0	635.0	74%	0	635.0	74%
Israel	2100	363	1000	300	412.5	1712.5	70%	0	1712.5	70%
Italy	19800	3051	18810	160	1500.0	20470.0	90%	0	20470.0	90%
Japan	14000	2417	11800	1392	1875.0	15067.0	92%	0	15067.0	92%
Morocco	150	38	0	0	62.5	62.5	33%	0	62.5	33%
Netherlands	6700	1157	7782	0	275.0	8057.0	103%	0	8057.0	103%
Norway	1800	311	1150	487	243.0	1880.0	89%	0	1880.0	89%
Poland	400	84.5	140	60	275.0	475.0	98%	21	496.0	102%
Portugal	900	61	811	88	136.5	1035.5	108%	11	1046.5	109%
Romania	250	52	135	30	137.5	302.5	100%	0	302.5	100%
Russia#	8000	268	4230	600	612.5	5442.5	66%	0	5442.5	66%
JINR	2300	38	1800	0	112.5	1912.5	82%	-140	1772.5	76%
Serbia	0	300	163	100	37.5	300.5	100%	0	300.5	100%
Slovak Republic	200	31	50	56	125.0	231.0	100%	0	231.0	100%
Slovenia	660	121	0	623	137.5	760.0	97%	0	760.0	97%
Spain	4600	742	4300	629	387.5	5316.6	100%	0	5316.6	100%
Sweden	4700	811	1240	3800	550.0	5590.3	101%	0	5590.3	101%
Switzerland	8500	1475	9600	276	262.5	10138.0	102%	0	10138.0	102%
Taipei	1320	224	0	1291	137.5	1428.0	92%	0	1428.0	92%
Turkey	200	75	2850	0 11731	250.0 1787.5	250.0	91%	0	250.0	91%
United Kingdom	15000	1368				16368.5	100%	0	16368.5	100%
US DOE + NSF	35500	3841	15150	16937	4537.5 125.0	36624.2	93%	0	36624.2	93%
CERN#	27400	5501	7860	23930	125.0	31914.5	97%	U	31914.5	97%
total	206620	31158	127631	75119	19397.0	222146.6	93%	-108	222020 6	93%
total	200020	31138	12/631	/5119	19397.0	222146.6	93%	-108	222038.6	93%

Original C.P obligations as defined in RRB-D 98-44 rev

C.C-A = Completion Costs for Common Items. Currently committed at 31 MCHF, over & above original C.P values
* Revised CP obligation following CEA withdrawal from TDAQ (Oct 2000 RRB)

[#] Revised CP contributions resulting from the CERN-Russia '5+5' decision in Oct 2000

In-kind Contributions to ATLAS Common Projects and Construction Completion (Category A) by Funding Agency as of August 31, 2006

	value (kCHF)	date of RRB decision
Australia		
- Cu shielding (inside LAr cryostats)	250	October 1999
Austria		
- superinsulation for end-cap toroids	200	October 1999
Canada		
- signal feedthroughs for LAr end-cap cryostats (including cables)	3360	October 1997
Czech Republic		
polyethylene moderator for IDshielding components	15 300	April 2001 October 2002
Denmark		
- power supply for toroid test station	200	April 1998

^{*)} contribution to Construction Completion

France IN2P3

 design of LAr end-cap cryostats construction of LAr end-cap cryostats cables for LAr barrel cr. feedthroughs parts of LAr prox. and external cryogenics LAr Cryoplant integration work additional tooling for LAr Barrel cryostat additional tooling for LAr EC cryostat LAr cryogenics project follow-up work LAr cryo process control system (add. cost)* support structures UX15* additional work on LAr EC cryostats* software for LAr cryo process controls* HM traction system for Big Wheels* 	720 2650 650 5000 550 120 125 650 730 270 100 600 300	April 1996 October 1997 October 1999 October 2002 October 2002 October 2002 October 2002 October 2003 October 2003 April 2004 October 2004 October 2004
France CEA		
 design of barrel toroid magnet work on B0 - coil EB welding tool for BT coil casings EB welding tool for BT coil casings reduction in contribution BT cryoring* 	3500 920 800 -800	October 1995 October 1996 April 1998 October 2001 April 2003
Germany, BMBF		
 design of LAr end-cap cryostats short sample superconductor 50% of superconducting cable for toroids construction of LAr end-cap cryostats elements of BT coil casings vacuum pumps for the toroid magnets elements of the BT coil casings (add. cost)* 	240 600 6800 1325 3350 1000 800	April 1996 April 1997 October 1997 October 1997 April 1998 October 2000 October 2002
Germany, MPI		
construction of LAr end-cap cryostatssupporting structures for cryolinesadditional work on LAr EC cryostats*	1325 750 100	October 1997 October 2001 April 2004

^{*)} contribution to Construction Completion

(-1	'66	ce
\mathbf{v}	-	

- Muons B wheels support	260	October 2003
Israel		
- thermal shields for ECTs	1000	April 2000
Italy, INFN		
work on B0 - coil25% of superconducting cable for	2450	October 1996
toroids	3400	October 1997
- winding machine for barrel toroid	3500	October 1997
- winding of BT coils	6500	April 1998
- thermal shields for BT coils	1300	April 1999
- thermal shields for BT coils, add. alloc.	250	April 2000
 engineering work for barrel toroid 	800	April 2001
- dump resistors	400	October 2002
- dump resistors (add. cost)*	80	October 2002
- foam system*	130	October 2003
Japan		
- design of solenoid	300	April 1996
- construction of solenoid	10600	April 1997
- solenoid power supply circuit	900	April 2004
		r
Netherlands, NIKHEF		
- vacuum vessels and part of the	(700	0 1 1 1007
cold mass for end-cap toroids - additional work on EC vacuum vessels*	6700 1080	October 1997
- additional work on EC vacuum vessels	1000	April 2004
Norway		
I A	1150	A:'1 0000
- LAr storage vessels	1150	April 2000

^{*)} contribution to Construction Completion

Poland

- trucks for Feet & Rails	140	October 2002
proposed:		
racks cabling and cooling*	21	October 2006
Portugal		
- He storage vessels	800	October 1999
proposed:		
- safety system*	11	October 2006
Romania		
- Muons B wheels support	120	October 2003
- Muons B wheels support (add. cost)*	15	October 2003
Muons B wheels support (add. cost)	13	October 2003
P		
Russia		
- current leads for toroid magnets	100	April 1999
- tie rods for BT coils	300	April 1999
- mechanical supports for BT test station	150	April 1999
- tie rods for BT coils, reduction of alloc.	<i>-</i> 100	April 2000
- BT superinsulation	200	April 2000
 ECT cold mass support rods 	100	April 2000
- BT warm structure	650	April 2000
- detector support structures (Feet and Rails)	3250	October 2000
- BT warm structure (reduction in contribution	on) -400	October 2001
- detector support structures (Feet and Rails)	-1200	October 2001
reduction in contribution		
- busbars	420	October 2002
- busbars (adjustment)	- 70	April 2003
- BT super insulation assembly	150	October 2002
- Muons B wheels support	825	October 2003
- BT superinsulation (additional material)	135	October 2004
- busbars	50	October 2004
- detector support structures (Feet and Rails)	-330	October 2004

^{*)} contribution to Construction Completion

JINR

 BT warm structure detector support structures (Feet and Rails) BT warm structure (increase in contribution) detector support structures (Feet and Rails) reduction in contribution proposed adjustment: detector support structures (Feet and Rails) 	800 1000 +400 -400	April 2000 October 2000 October 2001 October 2001
Serbia		
- shielding disks and supports*	165	April 2003
Slovak Republic		
- LAr cryogenics filter boxes	50	October 2003
Spain		
- vacuum vessels for the BT coils	5300	October 1998
 steel for vacuum vessels reduction of contribution 	- 1000	April 2000
Sweden		
steel for vacuum vesselssurveying support	1000 240	April 2000 April 1999
Switzerland		
- 25% of superconducting cable for	2400	0 1 1 1007
toroids - elements of BT coil casings	3400 5000	October 1997 April 1998
- elements of BT coil casings (add. cost)*	1200	October 2002
United Kingdom		
design of end-cap toroid magnetsproximity cryogenics for barrel toroid	1250	October 1995
test station	1700	October 1998
- proximity cryogenics test station (adjustment	1700	October 1770

^{*)} contribution to Construction Completion

- design of LAr barrel cryostat	1960	April 1996
- construction of LAr barrel cryostat		
(re-evaluation of CORE contribution		
after tendering in autumn 1998)	5000	October 1997
- signal feedthroughs for LAr barrel cr.	3530	October 1997
- high voltage feedthroughs for LAr		
barrel and end-cap cryostats	660	October 1997
- engineer for central magnet project team	400	October 1999
- parts of LAr prox. and external cryogenics	1500	October 1999
- extension of supply for LAr cryogenics	600	October 2000
- TDAQ processors	1500	April 2004

CERN

- design of infrastructure elements	1900	April 1998
- current leads for toroid magnets	100	April 1999
- tie rods for BT coils	300	April 1999
- mechanical supports for BT test station	150	April 1999
- barrel toroid test station mechanics	860	October 1999
- tie rods for BT coils (increase of allocation)	100	April 2000
- ECT cold mass support rods	100	April 2000
- BT warm structure	750	April 2000
- magnet and safety controls	3500	April 2003
- proximity cryogenics test station (adjustment) 100	April 2003

^{*)} contribution to Construction Completion

^{*)} contribution to Construction Completion