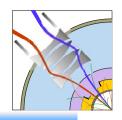
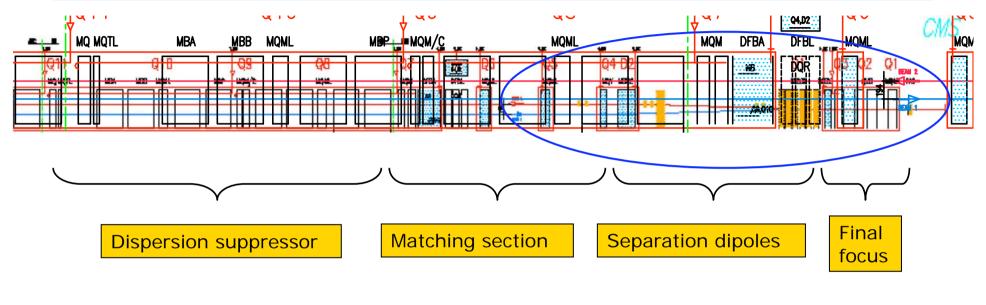
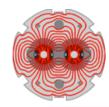


LHC IR Upgrade Phase-1

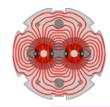


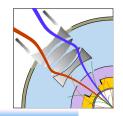

- 1. Project goals and constraints
- 2. Elements of the conceptual design
- 3. Cost estimate
- 4. Procurement structure
- 5. Perspectives



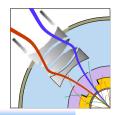
The ATLAS and CMS interaction regions

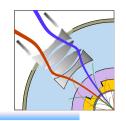



- Triplet position $L^* = 23 \text{ m}$
- Triplet gradient 205 T/m
- Triplet aperture
 - Coil 70 mm
- Power in triplet $= 10^{34}$ ~ 180 W @ 1.9 K

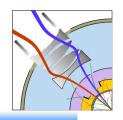

The low-b triplet in IR1




The low-b triplet in IR5

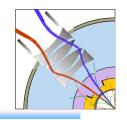


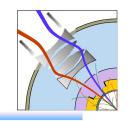
The Matching Sections

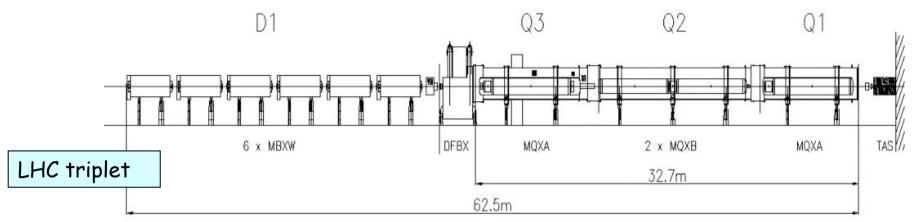

Goal of the upgrade:

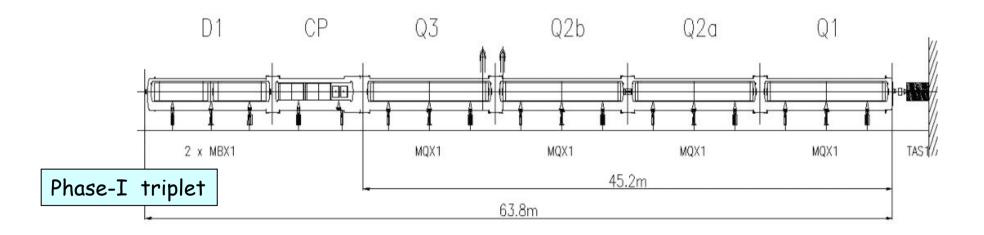
Enable focusing of the beams to $b^*=0.25$ m in IP1 and IP5, and reliable operation of the LHC at 2 to 3 10^{34} cm⁻²s⁻¹ on the horizon of the physics run in 2014.

Scope of the Project:

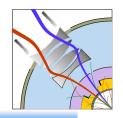

- 1. Upgrade of ATLAS and CMS interaction regions. The interfaces between the LHC and the experiments remain unchanged.
- 2. The cryogenic cooling capacity and other infrastructure in IR1 and IR5 remain unchanged and will be used to the full potential.
- 3. Replace the present triplets with wide aperture quadrupoles based on the LHC dipole (Nb-Ti) cables cooled at 1.9 K.
- 4. Upgrade the D1 separation dipoles, TAS and other beam-line equipment so as to be compatible with the inner triplets.
- 5. Modify matching sections to improve optics flexibility and machine protection, and introduce other equipment relevant for luminosity increase to the extent of available resources.


Project Start	Jan 2008
CD Report	Nov 2008
TD Review	mid 2009
Model magnets	end 2009
Pre-series quadrupole	end 2010
String test	2012 -> 2013
Installation	shutdown 2013 -> <mark>2014</mark>

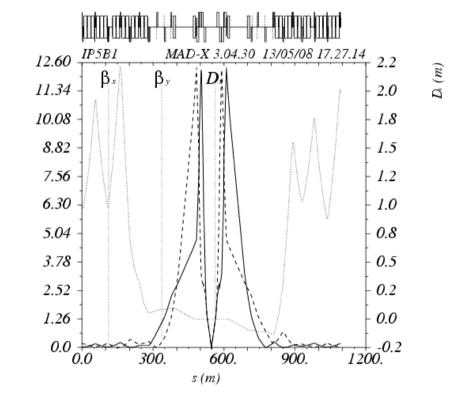




- <u>Interfaces with the experiments</u>: Very tight interfaces between the triplet, TAS, shielding, vacuum and survey equipment, and beam instrumentation; no possibility of reducing L* (23m).
- <u>Cryogenics</u>: <u>Ultimate cooling capacity is 500 W@1.9K</u> in each triplet. Replacement of triplets in IR1/5 requires at present warm-up of 4 sectors.
- <u>Chromatic aberrations</u>: Reduction of b* drives chromatic aberrations all around the LHC. A new optics solution for all arcs and insertions is necessary.
- <u>Accessibility and maintenance</u>: Severe space constraints around IP1 and IP5 for any new equipment. New magnets must be similar in size to the LHC main dipole.
- <u>Upgrade implementation</u>: during the extended shutdown, compatible with CERN-wide planning (Linac4 commissioning, phase-1 upgrade of the experiments).



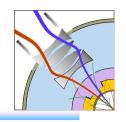
Initial proposal, iterations expected.



<u>Insertions.</u> The strength and aperture of the magnets are the limiting factors for reducing b*.

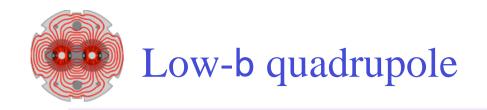
<u>Arcs</u>. Correction of chromatic aberrations requires re-phasing of all the arcs and insertions for $b^* < 0.5$ m.

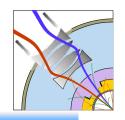
<u>Triplets</u>. Parasitic dispersion in the triplets due to large crossing angle has to be controlled. Beam crossing schemes in IP1 and IP5 need to be conform.

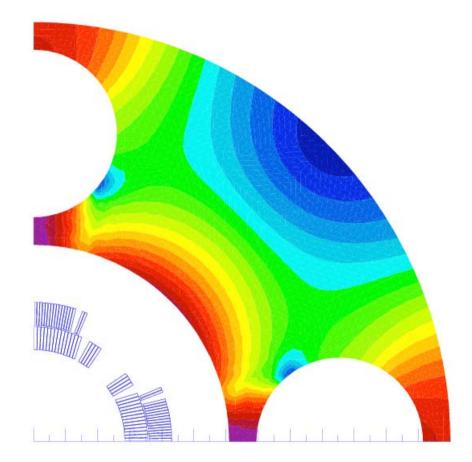

A complete solution for the new LHC collision optics has been developed. Considerable work is required to fully validate the flexibility and robustness of the new optics.

3)]

 $\lambda \approx 0I_*]$

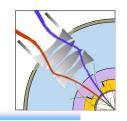

 \mathfrak{Z}_{k} (m), \mathfrak{Z}_{k} (m)

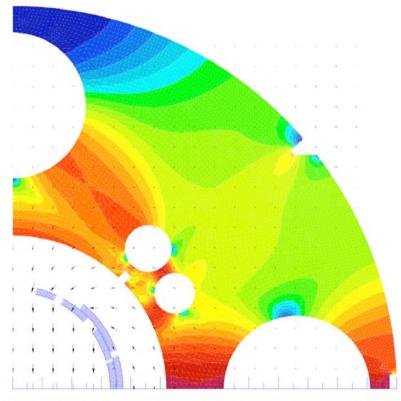




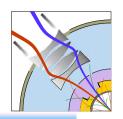
- The Phase-1 Upgrade assumes that the operating parameters and the position of the matching section magnets (D2-Q6) remain unchanged.
- Reduction of b* inevitably reduces the aperture margin in Q4, D2 and Q5 and nearby equipment.
 - > TAN vacuum chamber will have to be replaced.
 - Protection against the beam halo (tertiary collimators) will need to be extended to matching section magnets.
 - Protection of the arc magnets against diffractively scattered particles needs to be confirmed.
 - > Integration of forward-physics experiments to be confirmed.
 - ≻ Background will need special attention.

Interventions on the warm equipment can be done in normal shutdown periods.



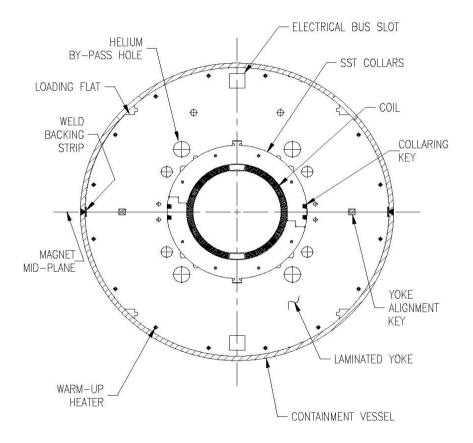


Coil aperture Gradient Operating temp Current nductance mH/m	120 mm 120 T/m 1.9 K 13 kA 5
Dperating temp Current nductance nH/m	1.9 K 13 kA
Current nductance mH/m	13 kA
nductance nH/m	
mH/m	5
Yoke ID	260 mm
Yoke OD	550 mm
_HC cables 01 a	nd 02
Enhanced cable polyimide insulation	
Self-supporting collars	
Single piece voke	
Nelded-shell cold	
	Yoke OD HC cables 01 ar Enhanced cable provided Insulation Self-supporting cables Single piece yoke



0 21.15 42.31 63.46 84.62105.77126.92148.08169.23190.3&11.5&32.6&53.85 275

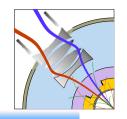
MC	BX	
•	Coil aperture	140 mm
•	Field strength	6 Tm
•	Operating temp	1.9 K
•	Current	2.5 kA
•	Inductance mH/m	55
•	Yoke ID	260 mm
•	Yoke OD	550 mm
•	New cable desigr	٦
•	Cable polyimide insulation	
•	Self-supporting collars	
•	Single piece yoke	
•	Welded-shell cold	d mass



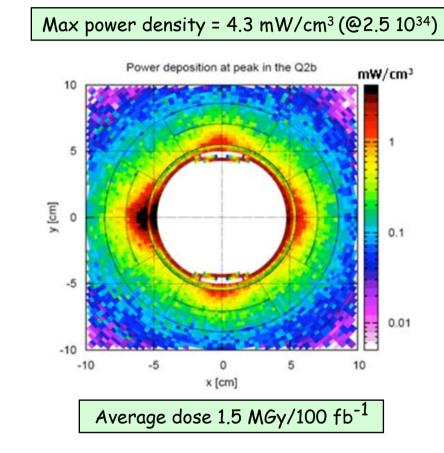
RHIC DX magnet

- Coil aperture 180 mm
- Cold bore 163/174 mm

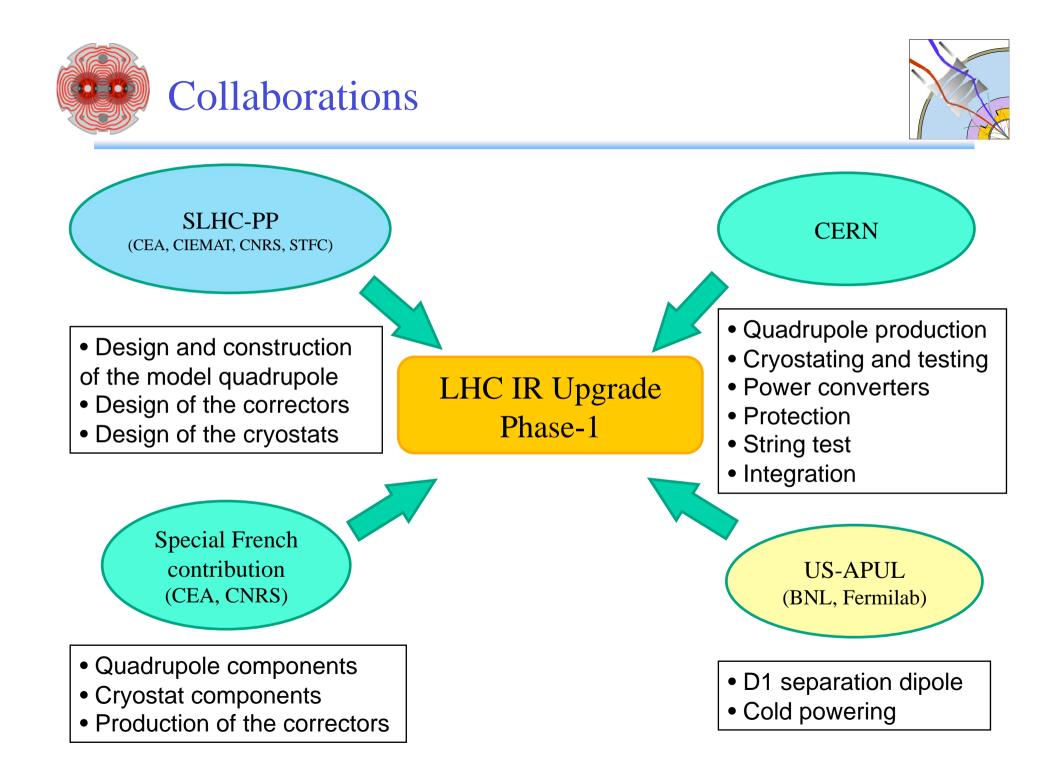
140


- Warm bore mm
- Magnetic length 3.7 m
- Operating temp 4.5 K
- Field 4.4 T
- Current 6.8 kA
- Stored energy 1100kJ
- Inductance 49 mH

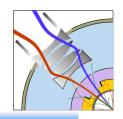
D1 = two DX in one cryostat

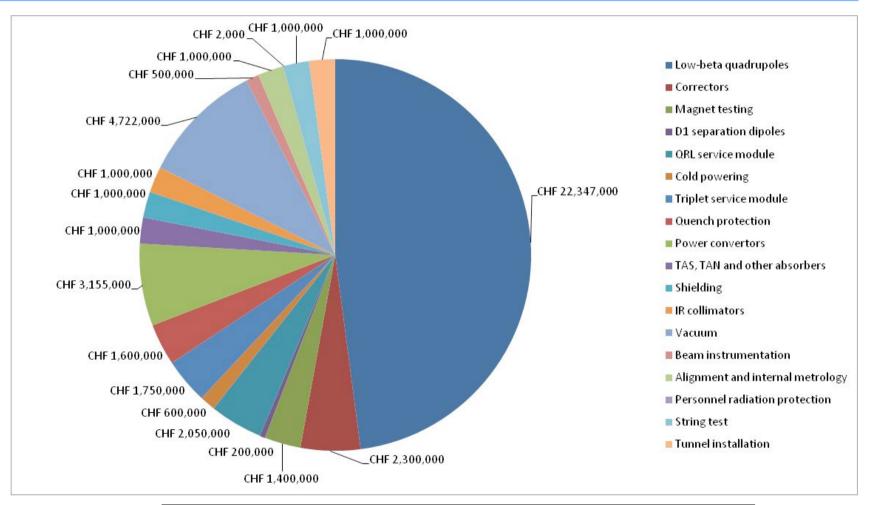


Protection against particle debris

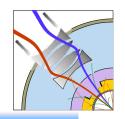


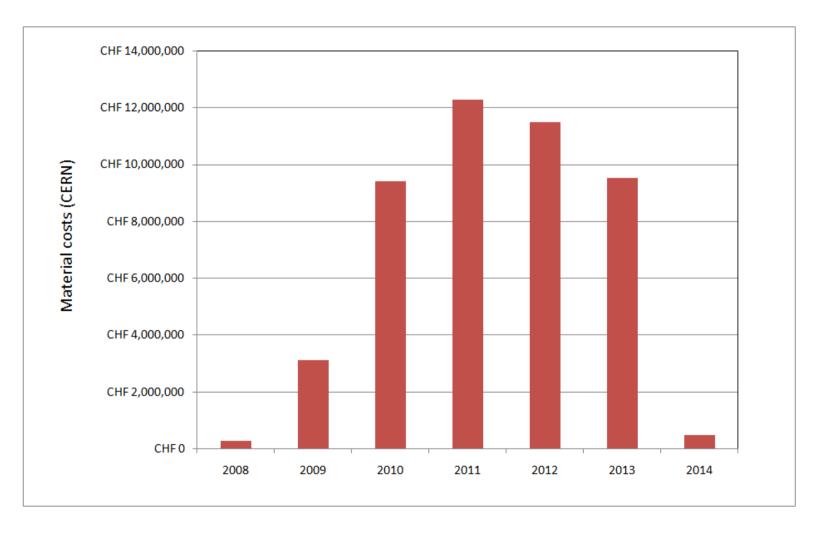
Protection against particle debris is the single most serious issue of the upgrade.

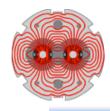

- Energy deposition in the coils and magnet lifetime.
- Equipment protection in the tunnel (TAS, TAN).
- Protection of electronic equipment in underground areas.
- Maintenance and interventions ...



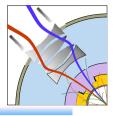
All magnets built for a lifetime > 500 fb⁻¹, compatible with the lifetime of ATLAS and CMS before the phase-2 upgrade.

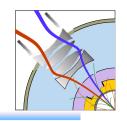






Total estimated material costs: 46.6 MCHF (excluding US-APUL contribution)





Procurement structure

WP Title 2009 2010 2011 2012 2013 4 Low-beta quadrupoles	<pre>{ Date of invitation for tender</pre>
Low-carbon steel sheets 700,000 CHF Yoke laminations 500,000 CHF	
Yoke laminations 500,000 CHF	
Half-shells 1,000,000 CHF	
Collaring keys 200,000 CHF	 Estimated cost
End supports 400,000 CHF	Estimated Cost
End covers 1,000,000 CHF	
Heat exchanger tubes 500,000 CHF	
Vacuum vessels 1,000,000 CHF	
Curing mold 500,000 CHF	
Collars 300,000 CHF	٦
Quench heaters 200,000 CHF	On a sight English
Cold bore tubes 200,000 CHF	Special French
Cryostat components 1,500,000 CHF	Contribution
Corrector production 2,000,000 CHF	
FSU 400,000 CHF 450,000 CHF 1,500,000 CHF 3,800,000 CHF 1,700,000 CHF	-
11 Quench protection	
Energy extraction systems 1,000,000 CHF	
12 Power convertors	
Main 1Q converters 2,000,000 CHF	
Corrector 4Q converters 1,000,000 CHF	
16 Vacuum system	
Purchase P506 steel 700,000 CHF	
Co-lamination of P506 steel 600,000 CHF	
Beam screen tube forming 1,300,000 CHF	
Contracts > 200 kCHF = 12.7 MCHF	
Production manpower = 7.8 MCHF	
Special French Contribution = 4.2 MCHF	
Orders < 200 kCHF = 22 MCHF	

- The first phase of the LHC interaction region upgrade relies on the mature Nb-Ti magnet technology with the target of increasing the LHC luminosity to 2 to 3 10³⁴ cm⁻²s⁻¹, *while maximising the use of the existing infrastructure*.
- A solid, reviewed and coherent conceptual design, in line with the general constraints, is at hand. The technical design, including the model work and limited R&D activities, are advancing to a tight schedule.
- Collaborations with European and US laboratories, which bring in their expertise and resources, have been formalised and are in effect.
- Bringing the LHC to nominal performance in the shortest term is the top priority of the CERN management and LHC physics community.
 - The available resources at CERN for the construction of the magnets and other equipment for the Phase-1 Upgrade are subject to this priority.