

STATUS REPORT

Peter Butler University of Liverpool

The heavy ion storage ring TSR MPIK Heidelberg

Circumference: 55m

TSR matching to HIE-ISOLDE

Beam can be accelerated (and decelerated) inside the ring

lon	Z	q	A/q	Breeding time (ms)		
⁷ Be	4	3	2.33	20		
¹⁸ F	9	9	2	100		
⁷⁰ Ni	30	25	2.8	350		
¹³² Sn	50	39	3.38	700 *		
¹⁸² Pb	82	53	3.43	1000 *		
¹⁸² Pb	82	64	2.84	EBIS upgrade needed		

* to be tested

World-wide storage rings

(T_{1/2} > 1μs)

Masses, lifetimes

Reaction studies

TSR: electron cooling

Radial beam extension

Light elements easiest to reach low A/q

10⁹ ions in ring

TSR versus linac alone

	HIE-ISOLDE	HIE+TSR	
Beam structure	Macrostructure	DC	
Beam x-y	few mm	~ mm	
Beam energy resolution	1.4E-3	1E-4 - 1E-5	
Transverse emittance	0.1 mm-mrad	0.03 mm-mrad	
Beam purity	A/q contamination possible	better than 1 in 5000	
Target z-extent	negligible	5mm or less	
Target thickness	~ 100µg/cm²	negligible	
Target purity	e.g. CH ₂	pure gas	
Vacuum requirement	SHV	UHV	

Half life of H-like ⁷Be in the Sun

 β -delayed proton emission of ¹¹Be

laser spectroscopy

Measurements using internal target

Internal versus external detectors

External target: beam extraction

- Extraction times can be reduced to ~ 1s
- Efficiency (cooled beam) ≈90%
- Properties similar to those of the cooled beam

probe tensor interaction: N=82 using ¹⁴⁶Gd, ¹⁴⁸Dy, ¹⁵⁰Er (d,p) N=126 using ²⁰⁶Hg, ²¹²Rn, ²¹⁴Ra (d,p)

pear-shaped nuclei for EDM ²²⁵Ra(d,d')

Isol(de) Solenoidal Spectrometer

Funded by UK

ISS installation

- Presently in building 190
- Cool down with dewars or in SM18
- Magnet is energised prior to final move
- Field mapping
- Move to building 170 January 2017
- Install magnetic shielding (upstream and downstream)
- Install Si array (ANL), electronics, DAQ
- Source tests, stable beam line to commission beam line
- Ready for beam 2018
- Install ISOL-SRS Si array (UK) & recoil detector 2019-2020
- Upgraded detector ready for beam 2021
- Move ISS to TSR hall 2022?

Q-value energy resolution

Beam-line layout

TSR@ISOLDE workshop at MPI-K Heidelberg evaluated the future for TSR Oct 2010

ISOLDE and Neutron Time-of-Flight Committee endorsed Jan 2012

TSR technical design report **129 co-authors (47 institutions)**

EPJ Special Topics **207** 1-117 May 2012

Approved by CERN Research board, May 2012

"The installation of TSR, as an experiment to be included in the HIE-ISOLDE programme, was approved by the Research Board.

The timescale will be defined once the study of its Integration has been completed."

Presentation of the integration study to the CERN Research Board Nov 2013

UK internal + external detectors (ISOL-SRS) ~£5M funded, project 2015-2019 External detector phase (i): exploit HIE-ISOLDE beams (3rd beam-line) from 2018 Internal detector & external detector phase (ii): exploit TSR from 2023

tor nuclear Physics in Heidenberg, this proposed to install this ring at the HIE-ISOLDE facility in CERN, thus enabling a variety of unique experiments in nuclear-, astro- and atomic physics.

ecpsciences 🖄 Springer

TSR budget

	2014 integration study	2016 integration study	revision?	
Capital	16 MCHF	22 MCHF	19 MCHF	
FTE	26	44	28	

(increases due to extraction line, hall infrastructure, vacuum infrastructure, project management, commissioning/operation)

Infrastructure contributions

Germany UK **ISOLDE** collaboration

Detectors

UK (includes FTE) Belgium Denmark/Sweden other opportunities 4 FTEs 2 FTE (to be confirmed) ??

6.9 MCHF 0.2 MCHF (0.5 MCHF proposed)

. . . .

Back Up

Summary

Several areas of HIE-ISOLDE research area will strongly benefit from TSR.

New opportunities, particularly nuclear astrophysics, will come from the TSR.

New UK detection systems:

first phase will exploit HIE-ISOLDE (3rd beam-line) but will require TSR (and was funded on its promise).

TSR should have its building in the near future (maintenance and expert manpower issue).

TSR transfer lines & integration scheduled after LS2.

Internal target: beam lifetimes

Survival times

Dominated by electron capture and stripping Residual gas and gas target

Effective target thickness: (gas target thickness) x (revolution frequency) x (lifetime

Table 1: Parameters of beams circulating in the TSR. See text for details.							
Ion	Nuclear lifetime	Energy (MeV/u)	Cooling time	Beam lifetime in residual gas	$\begin{array}{c} H_2 \ target \\ (atoms/cm^2) \end{array}$	Beam lifetime in target	Eff. target thickness $(\mu g/cm^2)$
$^7\mathrm{Be}\;3^+$	(53 d)	10	$2.3 \mathrm{~s}$	$370 \mathrm{\ s}$			
$^{18}F 9^+$	100 m	10	$0.7 \ s$	$280 \mathrm{s}$	$1 imes 10^{14}$	236 s	31000
26m Al 13 ⁺	$6.3 \mathrm{\ s}$	10	$0.5 \ s$	$137 \mathrm{\ s}$	$5 imes 10^{14}$	23 s	4200
${}^{52}Ca \ 20^+$	$4.6 \mathrm{\ s}$	10	$0.4 \mathrm{\ s}$	58 s	$5 imes 10^{14}$	$9.6 \mathrm{\ s}$	3000
⁷⁰ Ni 28 ⁺	$6.0 \mathrm{\ s}$	10	$0.25 \ s$	3 0 s	$2 imes 10^{14}$	12 s	1600
⁷⁰ Ni 25 ⁺	$6.0 \mathrm{\ s}$	10	$0.3 \ s$	26 s	2×10^{13}	$2.1 \mathrm{~s}$	60
$^{132}Sn \ 30^+$	$40 \mathrm{s}$	4	$0.4 \mathrm{\ s}$	$1.5 \mathrm{~s}$	$1 imes 10^{12}$	$1.4 \mathrm{\ s}$	1.2
132 Sn 45 ⁺	40 s	4	$0.2 \mathrm{\ s}$	$1.4 \mathrm{~s}$	$5 imes 10^{12}$	$1.6 \mathrm{\ s}$	7
132 Sn 39 ⁺	$40 \mathrm{s}$	10	$0.25 \ s$	$7.4 \mathrm{~s}$	2×10^{12}	$3.6 \mathrm{s}$	9.5
$^{132}Sn \ 45^+$	$40 \mathrm{s}$	10	$0.2 \ s$	$10 \mathrm{\ s}$	$5 imes 10^{13}$	$1.3 \mathrm{~s}$	90
186 Pb 46^{+}	$4.8 \mathrm{\ s}$	10	$0.25 \ s$	$4 \mathrm{s}$	2×10^{12}	$1.5 \mathrm{~s}$	4
¹⁸⁶ Pb 64 ⁺	4.8 s	10	$0.13 \mathrm{~s}$	$5 \mathrm{s}$	$1 imes 10^{13}$	$1.7 \mathrm{~s}$	20

In-ring collinear laser spectroscopy

LASER SPECTROSCOPY:

Measure charge radii and moments of previously inaccessible unstable light nuclei. Use interaction of lasers with ions recirculating in the ring to induce fluorescent emission and study hyperfine structure.

Produce He-like ions in EBIS of HIE-ISOLDE (allows high precision in use of atomic models for calibration)

Inaccessible transition energies Doppler-shifted

Recirculation of the beam

Polarisation & purification possible

STACKING

SLOW BEAM EXTRACTION e-cool for 1 s

Shift Q_x close to resonance 8/3

Apply 30 kHz (bandwidth) noise on extraction kicker

Horizontal emittance increase -> beam extraction

In-ring measurements

Example: p-nuclei

proton-rich isotopes between Z=34 & Z=80 not accounted for by s- or r-process

p-process: reaction flow carried by (γ ,n), (γ ,p) or (γ , α) -

rp-process: reaction flow carried by (p,γ)

```
require high temperatures 2-3 GK
possible sites are:
SN type II
Novae
```

X-ray bursters (accreting binary systems) ~ SN Ia

Direct measurement of (p,γ) or (α,γ) rates in the Gamow window (³He,d) as surrogate of (p,γ) (p,α) as inverse of (α,p)

Example: galactic abundance of γ-ray emitter ²⁶Al

Phil Woods

Isomer can be excited in core collapse supernovae.

'Extinct' ²⁶Al observed in meteorites as excess ²⁶Mg.

Measure ^{26m}AI(d,p)²⁷AI transfer reaction.

Example: probe tensor interaction

Example: pear-shaped nuclei and EDMs

