

# Technical News

Richard Catherall EN-STI ISOLDE Technical Coordinator ISCC meeting 28<sup>th</sup> June 2016



- Start up
  - Frontend issues
  - Consequences
- Target developments
- RILIS developments
- MEDICIS
- Pill Press & Tape station
- HT tests



## The ISOLDE Start up 2016

- Cold check started on the 10<sup>th</sup> March instead of the 1<sup>st</sup> March for a number of reasons:
  - Delay in the modification of the target cooling water resulting from the investigation of the water leak above the RILIS barrack last year
  - Failure of GPS Frontend connectors (target and line) insulation blocks
    - Replaced with new insulators. Investigation on old insulators on-going
  - Short circuit on HRS Frontend resulting in the inability to operate target. Insulation temporarily repaired. A
    more permanent solution will be implemented on Friday 18<sup>th</sup> March.
  - Beam diagnostics in HRS suffering from recurring noise problems. To be replaced for the 3<sup>rd</sup> time on Friday 18<sup>th</sup> March
  - Test target #350 on GPS had an open circuit on the anode. Replaced with target #557 Ta surface ion source.
  - Strange behaviour with GPS optics. Proceed by exchanging target #557 before further machine investigations (on-going)
  - LIEBE target preparations. All foreseen activities successfully completed however there are doubts on the Hypertak connector supports and compatibility with HT. Investigations and a better solution under way.
  - 3 successive breakdowns of GPS HT power supply. Repaired thanks to the efficiency of TE-ABT-EC
- Repetitive issues with controls globally:
  - Inca, Fesa, magnet controls, working sets, databases, plc memories...etc
  - All contributing to a very slow and difficult start up of the machine



# Replacement of electrical insulators on GPS FE

- Discovered damaged insulator on target connector GPS
- All 3 were damaged
- Replaced with new insulators
- Untightened screw caused a short circuit preventing correct target and line heating





#### FE 1991 ... 2009 (FE 1, 2, 3, 4)

#### FE 2010 ... 2018 (FE 6, 7)

#### FE 2020 ... 2024



- Uniquement switches (pas de potentiomètre)
- Renvoi avec articulation et tringlerie
- Problèmes de jeux et de précision





- Adjonction d'un potentiomètre linéaire
- Système avec switches dans l'axe du mouvement
- Jeux très limité

## Détection de position Clamps PROPOSITIONS:

- Voir Retour Expérience à venir







## Front end consolidation design review

- Consolidate the existing design for future operations
- Accommodate new features for operations, maintenance and target development
- Improve reliability to reduce the number of interventions and maintenance
- Interesting ideas were presented and yet to be reviewed before implementation.
  - Planned for next week



## Consequences

- Laser ion source cold check delayed but may still be feasible before taking protons.
  - Will move RILIS target to HRS
- <sup>7</sup>Be target was postponed until the first week of April to allow for more machine preparation time.
- HRS working fine and had produced beam for the checking of beam lines further downstream but no time available to investigate RFQ Cooler transmission
- GPS optics and separator still under investigation.
  - Became operational as from 17 March
- Overall a lot of last minute repairs and checks before taking protons
  - Emphasises the need for a longer cold check out period dedicated to starting up the separators
- Protons taken on 4<sup>th</sup> April (SEM grid tests GPS)



- Start up
  - Frontend issues
  - Consequences

## Target developments

- RILIS developments
- MEDICIS
- Pill Press & Tape station
- HT tests

# The LIEBE project: toward short lived isotopes

- Preparation of LIEBE tests in spring 2016:
  - Installation of 100+ cables in the target area
  - Full installation sequence tested with the Kuka robot
- Production of target on-going:
- All parts produced,
- First sub-assembly done, heating elements installed & tested,
- Test of the pump on-going at IPUL laboratory.











# Negative beams @ PSB : Target tests Th/Ta-MK4 576

- TISD + negative At beams delivered to Lol148 in June 2016
  - Mixed Th/Ta target charge



- Slow release and good stability of production over time (5 days of operation)
- Measured beam on-line:
  - At- beams : not available elsewhere?
    - 204At (9.2min)  $\approx$  9e3/uC  $\rightarrow$ 5e3 /uC after 5 days
    - 206At (29.4min)≈ 6e3 /uC
  - I:
- I22I (3.6min) ≈ 6e5 /uC
- I 28I (25min)≈ 9e5 /uC
- I 37I (24.2sec) ≈ 9e4 /uC
- I 38I (6.4sec) ≈ 9e4 /uC

- CI:
  - 38Cl (37.18min) ≈ 1e5 /uC
  - 40Cl (1.35min) ≈ 9e4 /uC
  - 41Cl (38.4sec) ≈ 3.5e2 /uC
  - 42Cl (6.9sec) ≈ 1.4el /uC





TISD team, Target production team, offline testing team

Yield (/uC)

### Neutron defficient germanium sulfide beams



|   |            | er 12                                                        | р* ?                                                            | В*<br>Бр 3.55                          | g*                                                               | ¥ 352<br>lip                                                                     | y 111; 315;<br>161; 265                                                             | y 98, 67, 692<br>pp 1.81; 2.23                                                | y 50; 426;<br>377              | y 147; 1095,<br>830                                                         | πο μ*<br>γ 45    | 264, 84; Y.M.<br>1923. 87.                                                       | w 60                    | 280; 121; 401<br># 330                                                       | rt 22 + 63                                               |
|---|------------|--------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|
|   |            | 33                                                           | As<br>74.92160                                                  | As 64<br>40 ms                         | As 65<br>0.19 s                                                  | As 66<br>96 ms                                                                   | As 67<br>42,5 s<br>μ <sup>+</sup> 4.7; 6.0<br>γ 123; 121;                           | As 68<br>2.53 m<br>p <sup>+</sup> 4.7: 6.1.<br>y 1016; 762;                   | As 69<br>15.1 m<br>γ 233; 146; | As 70<br>53 m<br>β* 2.1; 2.8<br>γ 1040; 668;<br>1114; 745;                  | As 71<br>65.28 h | As 72<br>26.0 h                                                                  | As 73<br>80.3 d         | As 74<br>17.77 d<br>#* 0.9; 1.5<br>8 1.4                                     | As 75<br>100                                             |
| 1 | Ge 60<br>? | Ge 61<br>40 ms                                               | Ge 62<br>130 ms                                                 | Ge 63<br>95 ms                         | Ge 64<br>64 s<br>1 <sup>4</sup> 30, 33<br>7 427, 667<br>128.     | Ge 65<br>31 s<br>p <sup>+</sup> 4.6; 5.2.<br>7 650; 62;<br>809; 191.<br>Bp 1.28. | Ge 66<br>2.3 h<br><sup>6</sup><br><sup>6</sup><br><sup>7302, 44,<br/>109, 273</sup> | Ge 67<br>18.7 m                                                               | Ge 68<br>270.82 d              | Ge 69<br>39.0 h<br><sup>#</sup> <sup>1</sup> 12<br>71107: 574;<br>872; 1336 | Ge 70<br>20.38   | Ge 71<br>11.43 d                                                                 | Ge 72<br>27.31          | Ge 73<br>7.76                                                                | Ge 74<br>36.72                                           |
|   |            | Ga 60<br>70 ms<br>β* 8.3. 12.2<br>γ 1004; 3848<br>βρ<br>βα ? | Ga 61<br>168 ms<br><sup>µ+ 8.2</sup> ,<br>788; 418; 124;<br>756 | Ga 62<br>115.99 ms<br><sup>#*8.1</sup> | Ga 63<br>31.4 s<br><sup>p+</sup> -4.5.<br>7837; 627;<br>193; 650 | Ga 64<br>2.62 m<br>p* 2.9; 6.1<br>7.992; 806;<br>3366; 1387;<br>2195             | Ga 65<br>15 m<br>p <sup>+</sup> 2.1; 2.2<br>y115; 81; 153;<br>752                   | Ga 66<br>9.4 h<br>9 <sup>+</sup> 4.2.<br>7 1039: 2752:<br>834: 2190;<br>4296. | Ga 67<br>78.3 h                | Ga 68<br>67.63 m<br>9 <sup>+</sup> 1.9<br>9 1077; (1833                     | Ga 69<br>60.108  | Ga 70<br>21.15 m<br><sup>g=1.7</sup><br><sup>e</sup><br><sub>Y</sub> (1040; 176) | Ga 71<br>39.892<br>#4.7 | Ga 72<br>14.1 h<br><sup>8<sup>-1</sup>0;32<br/>9834;2202;<br/>630;2508</sup> | Ga 75<br>4.86 h<br><sup>p=1,2; 1.5.</sup><br>y297; 53; 3 |

| Database yields (ions / uC) |         |         |  |  |  |  |
|-----------------------------|---------|---------|--|--|--|--|
| Mass                        | Ge      | Ga      |  |  |  |  |
| 66                          | 3.6E+05 | 4.4E+08 |  |  |  |  |
| 67                          | 1.1E+06 | 8.0E+08 |  |  |  |  |
| 68                          | 5.0E+07 | 6.1E+08 |  |  |  |  |

Atomic Ge beams come with strong **isobaric contaminations** of Ga, AlCl and others



Solution: Shift to other mass region

 $\mathrm{Ge} + \mathrm{S} \to \mathrm{GeS}$ 

- Sulfur supplied by mass marker
- Database yields can be obtained
   Ratio <sup>67</sup>Ge / <sup>67</sup>Ge<sup>32</sup>S = 1 / 1
- Significantly lower contaminations



# Neutron Converter and molecular beams within ENSAR 2 – BeamLab

- Build the optimized converter for ISOLDE
  - Collaboration with TRIUMF and SCK.CEN
  - Cope with higher beam powers 50kW
  - Different target and ion source systems
  - Eg Molecular beams of MCOx









Fragment distribution tested with Q-COMIC



50

JPRamos, J Ballof





- Start up
  - Frontend issues
  - Consequences
- Target developments
- RILIS developments
- MEDICIS
- Pill Press & Tape station
- HT tests

### RILIS ionization scheme development milestones in April 2016

Performed during the ISOLDE startup period and the first physics run of 2016





RILIS

# RILIS operation @ ISOLDE in 2016



• 9 RILIS runs so far in 2016: Cr, Cu, Cu, Mg, Ni, Dy, Mn, Mn, In



- RILIS-ionized **Beryllium-7** sample preparation for n-TOF
- First isomer-selectively RILIS-ionized indium beams





## Photo-detachment of negative **astatine** ions





Possibly the world's first demonstration of a photo-detachment of a radioactive ion beam!



Successful completion of LOI I-148, now ready for data-taking for experiment IS-615

S.Rothe (spokesperson), J. Sundberg (PhD work)





- Start up
  - Frontend issues
  - Consequences
- Target developments
- RILIS developments

## • MEDICIS

- Pill Press & Tape station
- HT tests

## **CERN-MEDICIS**





- Start up
  - Frontend issues
  - Consequences
- Target developments
- RILIS developments
- MEDICIS
- Pill Press & Tape station
- HT tests



## New Pill Press & Tape station

• Delivered and installed in ground floor chemistry lab



Tape station fully installed on LA2 beam line (Almost)Ready for testing with beam





- Start up
  - Frontend issues
  - Consequences
- Target developments
- RILIS developments
- MEDICIS
- Pill Press & Tape station
- HT tests

#### A new 60kV modulator for ISOLDE

The new modulator has been tested in operation at the ISOLDE facility during a dedicated MD.

The new set-up was installed in the HT room running in pulse mode with the ISOLDE target load installed and with proton beam.

#### https://edms.cern.ch/document/1620992/1



Prototype installation in ASTEC tank (ISOLDE HT room)

#### T. Gharsa, J. Schipper

#### MD test results

The validation tests of the new device has been realized with the *most severe beam induced leakage current* target up to the maximum proton pulse intensity.

#### Testing conditions\*:

The operational voltage range for the test was limited to 30kV due to the replacement of a broken HV amplifier. The global recovery loop gain was also reduced, resulting in a slower transient response.



HV recovery signal (V) : 3.3E13ppp at 1.4Gev – HV = 40kV

A substantial gain in terms of recovery time over the actual modulator was achieved.

|            | 30 kv  | 40 kv  | 50 kv* | 60 kv* |
|------------|--------|--------|--------|--------|
| 1.5E13 ppp | 1.2 ms | 1.6 ms | 2 ms   | -      |
| 3.3E13 ppp | 1.6 ms | 2.5 ms | -      | -      |

Based on these results an upgrade of the prototype is envisaged to adapt it to the measured loading. As a first approximation, the post impact induced leakage is proportional to  $N^{0.5}$ , N being the burst intensity.



Beam induced leakage current (mA) : 3.3E13ppp at 1.4Gev



# LS2 Plans

Richard Catherall ISOLDE Technical Coordinator



## Agenda for LS2

- LS2 start -> December 2018
- LS2 end -> end of 2020 (?)
- Hope to start ISOLDE with stable beam/off-line physics mid-2020
- Change Frontends of both separators
- Re-alignment of ISOLDE beam lines?



## Front End Change

### Justification

- Coming to the end of their lifetime.
  - Failures of insulation and mechanical parts, vacuum pumps to be replaced...etc
- Profit to make improvements of existing design for more reliability
  - Outlined in a recent Frontend Design Review
- The proposed changes will be relatively minor/failsafe
  - Recent experience has shown that even minor changes can have knock on effects in the long term
  - Difficult to test changes in similar harsh conditions



## **ISOLDE** Consolidation

• On-going consolidation over the next 5 years

| Work package                                | Group  |
|---------------------------------------------|--------|
| Frontends x2 +1 Reserve                     | EN-STI |
| Tape station                                | EN-STI |
| Vacuum                                      | TE-VSC |
| Cameras for target area                     | EN-STI |
| Off line 2                                  | EN-STI |
| Beam diagnostics electronic and mechanics   | BE-BI  |
| RILIS laser power supplies                  | EN-STI |
| 60kV modulator                              | TE-ABT |
| Magnets (separators and REX triplet spares) | TE-MSC |