PHENIX results on centrality and beam energy dependent Levy HBT analysis

Sándor Lökös for the PHENIX collaboration

Eötvös University, Budapest and EFOP-3.6.1-16-2016-00001, Gyöngyös

XII. Workshop on Particle Correlations and Femtoscopy
Nikhef, Amsterdam, The Netherlands

The conference participation was subsidised by the Talented Student Program of Eötvös Loránd University, Budapest
Outline

- The PHENIX experiment
- Bose-Einstein correlations
- Lévy-type distributions and the critical point
- Centrality dependent results at $\sqrt{s_{NN}} = 200$ GeV, 62 GeV and 39 GeV
- Summary
Observing collision of p+p, p+Al, p+Au, d+Au, h+Au, Cu+Cu, Cu+Au, Au+Au, U+U

Charged pion ID from ~ 0.2 to 2 GeV

Typical Au+Au: $\sqrt{s_{NN}} = 130$ GeV, 200 GeV

Beam energy scan program: 62.4, 39.0, 27.0, 19.6, 14.5, 7.7 GeV
Bose-Einstein correlations

- Correlation function from one- and two-particle momentum distributions:
 \[C_2(p_1, p_2) = \frac{N_2(p_1, p_2)}{N_1(p_1)N_2(p_2)} \rightarrow C_2(q, K) = 1 + \frac{|\tilde{S}(q, K)|^2}{|\tilde{S}(q = 0, K)|^2} \]

 where \(q = p_1 - p_2 \) and \(K = (p_1 + p_2)/2 \)

- Several effects could modify the correlation functions:
 - Like-charged pions \(\rightarrow \) Coulomb correction needed: \(C_{B-E} = K(q) \cdot C_m(q) \)
 - Strong final state interaction
 - Effect of the resonance pions \(\rightarrow \) core-halo model:
 \[S = S_{\text{core}} + S_{\text{halo}} \]
 - Long-lived resonances contribute to the halo
 - In-medium \(\eta' \) mass modification \(\rightarrow \) specific, \(m_T \) dependent suppression
 - Partial coherence
 - Squeezed states
 - Aharonov-Bohm-like effect (see our poster :)
 - The hadron gas around the pair could reduce the strength of the correlation
 - Could be treated as an Aharonov-Bohm-like effect

Sándor Lökös for the PHENIX collaboration
Lévy-type distribution and the critical point

- Generalized Gaussian – Lévy-distribution
 - Anomalous diffusion
 - Generalized central limit th.

\[L(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^\alpha} \]

- \(\alpha = 2 \) Gaussian, \(\alpha = 1 \) Cauchy, \(0 < \alpha \leq 2 \) Lévy
- The \(C_2 \) from a symmetric Lévy-source:

\[C_2(Q) = 1 + \lambda \cdot e^{-(RQ)^\alpha} \]

- Spatial corr. \(\sim r^{-1-\eta} \) in 3D \(\rightarrow \) defines \(\eta \) exponent
- Symmetric stable distribution (Lévy) \(\rightarrow \) spatial corr. \(\sim r^{-1-\alpha} \)
- \(\alpha \) identical to \(\eta \)!
- For details see e.g.:
Searching for the critical point

- QCD universality class ↔ 3D Ising [5],[6]
- At the critical point:
 - random field 3D Ising model [7]: $\eta = 0.5 \pm 0.05$
 - 3D Ising [8]: $\eta = 0.03631(3)$
- Change in $\alpha \rightarrow$ vicinity of the CEP
- Motivation for precise HBT measurements ...
 - ... with different multiplicity \rightarrow centrality dependence
 - ... with different energy: now 200 GeV, 62 GeV, 39 GeV

Lévy exponent α at 200 GeV

- Slightly non-monotonic behavior as a function of m_T
- Average has non-monotonic behavior at 200 GeV
- $\alpha = \langle \alpha \rangle$ constant fits were performed with centrality bin dependent value

Sándor Lökös for the PHENIX collaboration

PHENIX results on centrality and beam energy dependent Lévy HBT analysis
Lévy exponent α at 62 and 39 GeV

- Lévy exponent α does not seem to depend on $\sqrt{s_{NN}}$
- Fewer centrality bins have to be used due to the statistics
- $\alpha = \langle \alpha \rangle$ constant fits were not done
Lévy scale R at 200 GeV

- Not equivalent with the Gaussian width but show similar trends
- Linear scaling behavior is seen in $1/R^2(m_T)$
- α fix fits reduce the systematic uncertainties
Lévy scale R at 62 and 39 GeV

- Similar decreasing trends with m_T as in the Gaussian case
- Similar trends as at 200 GeV
- Fewer centrality bins have to be used due to statistics
Lévy strength λ at 200 GeV

- Decreasing tendency at lower m_T not depend on centrality (as in [9])
- Can be observed clearly in $\lambda/\lambda_{\text{max}}$ with α fix (r.h.s. figure)
- Partial coherence predicts strong centrality dependence
- No centrality dependence of the “hole”

[9] Abelev et al. [STAR collaboration] PRC80, 024905
Lévy strength λ at 62 and 39 GeV

- Similar trends as at 200 GeV
- The characteristics of the “hole” do not depend strongly on $\sqrt{s_{NN}}$
- At $\sqrt{s_{NN}} \approx 19.4$ GeV the effect seems to disappear in S+Pb (see [10])

<table>
<thead>
<tr>
<th>λ</th>
<th>0-10%</th>
<th>10-20%</th>
<th>20-30%</th>
<th>30-40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>mT [GeV/c²]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\delta \lambda$</th>
<th>0-20%</th>
<th>20-40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>mT [GeV/c²]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[10] Beker et al. [NA44 collaboration], PRL74, 3340
New scaling parameter \hat{R} at 200 GeV

- $\frac{1}{\hat{R}} = \frac{\lambda(1+\alpha)}{R}$ scales with m_T
- Not sensitive to the α fixation
- May correspond to the area under the correlation function
- Experimentally observed, no theoretical explanation as far as we know
New scaling parameter \hat{R} at 62 and 39 GeV

- Surprisingly good behavior at lower energy
- Linear behavior does still hold
Summary

- Experimentally, a significant deviation from the Gaussian ($\alpha = 2$) case
- Symmetric Lévy shape is a statistically acceptable description
- Lévy parameters connected to rescattering, core/halo model and size
- Lévy exponent α: non-monotonic in N_{part}, almost independent of $\sqrt{s_{NN}}$
- Lévy scale R: geometric/hydro scaling, similar to Gaussian
- Lévy strength: low-m_T “hole” for $\sqrt{s_{NN}} \geq 39$ GeV, weak centrality dep.
- New par \hat{R}: linear scaling for $\sqrt{s_{NN}} \geq 39$ GeV, all investigated centrality

Thank you for your attention!
STAR centrality dependent results (left) and the comparison of STAR results in different $\sqrt{s_{NN}}$ with NA44 data (right)