THERMINATOR	BES	THERMINATOR for BES	p_T distributions	Correlations	Summary
00000	000	00	000	000000	

Two-particle correlations using THERMINATOR model for BES program

Paweł Szymański Hanna Zbroszczyk

XII Workshop on Particle Correlations and Femtoscopy Amsterdam, 14.06.2017

THERMINATOR 00000	BES 000	THERMINATOR for BES	p_T distributions 000	Correlations 000000	Summary
Outline					

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の Q @ 2/22

- 1 Introduction to THERMINATOR model
- 2 Beam Energy Scan
- **③** THERMINATOR for BES
- 4 Single particle distributions
- **5** Two-particle correlations
- 6 Summary and conclusions

THERMINATOR	BES	THERMINATOR for BES	p_T distributions	Correlations	Summary
●0000	000	00	000	000000	

Phenomenological models

Phenomenological models

THERMINATORBESTHERMINATOR for BES p_T d•0000000000000

 p_T distributions 000

Correlations

▲□ → ▲□ → ▲ 三 → ▲ 三 → ○ ④ 3/22

Summary

Phenomenological models

Phenomenological models

- Dynamic simulation of the collision process inspired by QCD
- Tracking of individual objects
- Propagation of individual particles through a cascade of collisions and decays

- Tracking of individual objects
- Propagation of individual particles through a cascade of collisions and decays

• Statistical description of multiparticulate system

▲□ → ▲□ → ▲ 三 → ▲ 三 → ○ ④ 3/22

- Propagation of individual particles through a cascade of collisions and decays
 - What about generators?

◆ロト ◆課 ト ◆ 語 ト ◆ 語 ト → 語 → のへで

THERMINATOR
 $0 \circ 0 \circ 0$ BES
 $0 \circ 0 \circ 0$ THERMINATOR for BES
 $0 \circ 0 \circ 0$ p_T distributions
 $0 \circ 0 \circ 0 \circ 0$ Correlations
 $0 \circ 0 \circ 0 \circ 0 \circ 0$

THERMINATOR generator

$\mathbf{THERM} al heavy\text{-}\mathbf{IoN} \ \mathbf{GenerATOR}$

- Generates collisions of relativistic ions
- Uses Monte Carlo methods
- Implements thermal models of particle production with single freeze-out

THERMINATOR: THERMal heavy-IoN generATOR A. Kisiel,T. Tałuć, W. Broniowski, W. Florkowski. Comput.Phys.Commun. 174 (2006) 669-687 THERMINATOR is a Monte Carlo event generator designed for studying of particle production in relativistic heavy-ion collisions performed at such experimental facilities as the SPS, RHIC, or LHC. The program implements thermal models of particle production with single freeze-out. THERMINATOR

BES THER

HERMINATOR for

 p_T distributions $_{\rm OOO}$

Correlation: 000000 Summary

Input file

[Ranges] # Rapidity range RapPRange = 4.0

Spatial rapidity range RapSRange = 8.0

[Model_parameters]
Proper time at freeze-out [fm]
Tau = 9.91

Maximum transverse radius [fm] RhoMax = 7.43

```
# Transverse velocity [c]
VelT = 0.407
```

Parameter A
ParA = 0.5

```
# Delay of the particle emition [fm]
Delay = 0.0
```

```
# Freeze-Out Temperature [MeV]
Temperature = 165.6
```

Input file

Input file takes following information:

- The number of events
- Parameters:
 - Temperature [MeV]
 - MuB, MuI, MuS [MeV]

▲□ → ▲□ → ▲ 三 → ▲ 三 → ○ ○ 5/22

- VelT
- Tau, RhoMax [fm]

Chemical potentials for Barion, Isospin (I_3), Strangeness and Charm [MeV] MuB = 28.5 MuI = -0.9 MuS = 6.9 MuC = 0.0

```
[Subdirectory]
# subdirectory to store events of this model
EventSubDir = bwap/
```


- Temperature (T) and chemical potentials: barion (μ_B) , strangeness (μ_S) , third component of isospin (μ_I) — thermodynamic parameters
- VelT (Vt) a parameter specific to the Blast-Wave model, denoting velocity
- Tau, RhoMax geometric parameters
 - Vt, Tau and RhoMax affect the produced particles The relation between RhoMax and Tau is: $\rho_{max}^2 \cdot \tau \simeq V$ V is the volume of the source

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THERMINATOR E ○○○○● C

THERMINATOR for 00 p_T distributions 000 Correlatio

Summary

Output file

Events stored in root file. Informations about particles:

- eid sequence number in the event
- fathereid squence number of the parent
- pid PDG identification number
- decay flag (1 decayed, 0 not)
- mass $[\text{GeV}/\text{c}^2]$
- components of four-momentum: e, px, py, pz [GeV/c]
- space-time coordinates of the creation point [fm/c]

THERMINATOR 00000

ES THERN

 p_T distributions 000

Correlations 000000 Summary

Relativistic Heavy Ion Collider (RHIC)

Goal of the RHIC Heavy Ion Program:

- search the QGP and measure its properties
- scan the QCD phase diagram

THERMINATOR
0000BES
000THERMINATOR for BES
000 p_T distributions
000Correlations
0000Summary
000000

Beam Energy Scan at STAR

 THERMINATOR
occord
 BES
occord
 THERMINATOR for BES
occord
 p_T distributions
occord
 Correlations
occord
 Summary
occord

 BES goals
 Image: Correlation of the second seco

Analyze all BES energies and find answers:

- Search for turn-off of QGP signatures
- Search for the QCD critical point
- Search for the signals of phase transition/phase boundary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

THERMINATOR	BES	THERMINATOR for BES	p_T distributions	Correlations	Summary
00000	000	0	000	000000	

Thermodynamic parameters

$\sqrt{s_{NN}}$ [GeV]	T [MeV]	$\mu_B \; [\text{MeV}]$	μ_{I_3} [MeV]	$\mu_S \; [\text{MeV}]$
7.7	139.0	406.4	-10.5677	93.4685
11.5	150.1	303.2	-7.9697	69.9562
19.6	156.2	196.8	-5.2882	45.6875
27	157.6	149.0	-4.0845	34.7938
39	158.4	106.9	-3.0241	25.1974
62.4	158.8	68.9	-2.0676	16.5409

"Therminator generator adaptation to the conditions of RHIC and FAIR experimantal complexes", Engineer's Thesis, Monika Seniut

◆□ → ◆昼 → ◆ 差 → 差 少 Q ペ 12/22

THERMINATOR BES THERMINATOR for BES p_T dist

 p_T distributions

Correlations 000000 Summary

$\sqrt{s_{NN}} = 7.7 \text{ GeV}, 0-5\%$

< □ > < 母 > < ≧ > < ≧ > ≧ ● ♀ ♀ ○ Q ♀ 13/22

THERMINATOR
0000BES
000THERMINATOR for BES
000 p_T distributions
0 \bullet Correlations
000000Summar
000000

$\sqrt{s_{NN}} = 11.5 \text{ GeV}, 0-5\%$

< □ > < 母 > < ≣ > < ≣ > ■ ■ の Q @ 14/22

THERMINATO

ES THERMINATO

 p_T distributions

Correlations 000000 Summary

$\sqrt{s_{NN}} = 39 \text{ GeV}, 0-5\%$

<□ → < @ → < \mathcal{e} → < \mathcal{e} → \mathcal{e} = の Q @ 15/22</p>

THERMINATOR
0000BES
000THERMINATOR for BES
000 p_T distributions
000Correlations
000Summary
0000

Two pions correlation - formulas

1D correlation

3D correlation

 $CF(q) = 1 + \lambda \cdot exp(-q^2R^2) \qquad CF(q) = 1 + \lambda \cdot exp(-q_o^2R_o^2 - q_s^2R_s^2 - q_l^2R_l^2)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで 16/22

THERMINATOR	BES	THERMINATOR for BES	p_T distributions	Correlations	Sur
00000	000	00	000	00000	

One dimensional correlation function

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 17/22

THERMINATOR BES THERMINATOR for BES p_T distributions Correlations S 000

$\sqrt{s_{NN}}$ [GeV]	R [fm]	λ
7.7	3.85 ± 0.23	0.55 ± 0.07
11.5	4.32 ± 0.22	0.55 ± 0.06
19.6	4.33 ± 0.18	0.54 ± 0.05
27	4.62 ± 0.19	0.51 ± 0.05
39	4.7 ± 0.2	0.48 ± 0.04
62.4	5.59 ± 0.25	0.50 ± 0.05

◆□▶ ◆■▶ ◆ ■▶ ◆ ■ ▶ ● ■ • • ○ へ ○ 18/22

Engineer's Thesis, Monika Seniut

Engineer's Thesis, Monika Seniut

<□▶ < @▶ < 注▶ < 注▶ 注 の < ⊙ 19/22

Three dimensional correlation function - R_{side}

Engineer's Thesis, Monika Seniut

< □ > < 母 > < ≣ > < ≣ > ■ ■ の Q @ 20/22

Engineer's Thesis, Monika Seniut

THERMINATORBESTHERMINATOR for BES p_T distributionsCorrelationsSummary0000000000000000000000

Summary and conclusions

Summary:

• Good agreement between model and experimental data in p_T distribution

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Differences between radii for model and experimental data:
 - $R_{out} \& R_{long}$ are smaller for Therminator 2 data
 - R_{side} close to experimental data (for energies from $\sqrt{s_{NN}} = 19.6 \text{ GeV}$)
 - $R_{out} \& R_{side}$ bigger dependencies on energy

 $\begin{array}{cccc} \text{THERMINATOR} & \text{BES} & \text{THERMINATOR for BES} & p_T \text{ distributions} & \text{Correlations} \\ \text{occoo} & \text{occ} & \text{occoo} & \text{occoo} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \text{occoo} & \text{occoo} \\ \end{array} \\ \end{array}$

Summary and conclusions

Summary:

- Good agreement between model and experimental data in p_T distribution
- Differences between radii for model and experimental data:
 - $R_{out} \& R_{long}$ are smaller for Therminator 2 data
 - R_{side} close to experimental data (for energies from $\sqrt{s_{NN}} = 19.6$ GeV)
 - R_{out} & R_{side} bigger dependencies on energy

Thank you for your attention!!!

THERMINATOR	BES	THERMINATOR for BES	p_T distributions	Correlations	Summary
00000	000	00	000	000000	

BACKUP

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > ■ の へ 23/22

THERMINATOR
0000BES
000THERMINATOR for BES
000 p_T distributions
000Correlations
00000Summary
000000

$\sqrt{s_{NN}} = 19.6 \text{ GeV}, 0-5\%$

< □ > < 母 > < ≣ > < ≣ > ■ ■ の Q @ 24/22

THERMINATO

ES THERMINATO

 p_T distributions 000

Correlations 000000 Summary

 $\sqrt{s_{NN}} = 27 \text{ GeV}, 0-5\%$

< □ > < @ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ 25/22

THERMINATOR
0000BES
000THERMINATOR for BES
000 p_T distributions
000Correlations
00000Summary
000000

$\sqrt{s_{NN}} = 62.4 \text{ GeV}, 0-5\%$

< □ > < 母 > < 壹 > < 壹 > < Ξ > ○ < ♡ < ℃ 26/22

THERMINATORBESTHERMINATOR for BES p_T distributionsCorrelationsSummary00000000000000000000

3D radii for BES program energies

$\sqrt{s_{NN}}$ [GeV]	λ	R_{out}	R_{side}	R_{long}
7.7	0.79 ± 0.13	3.43 ± 0.33	3.34 ± 0.34	2.81 ± 0.35
11.5	0.8 ± 0.1	3.84 ± 0.31	3.6 ± 0.3	3.25 ± 0.34
19.6	0.8 ± 0.1	3.94 ± 0.29	3.72 ± 0.28	3.32 ± 0.27
27	0.8 ± 0.1	4.4 ± 0.3	4.08 ± 0.28	3.25 ± 0.26
39	0.72 ± 0.08	4.48 ± 0.31	4.11 ± 0.28	3.13 ± 0.24
62.4	0.8 ± 0.1	4.87 ± 0.32	4.6 ± 0.3	3.3 ± 0.2