Perspectives of correlation femtoscopy studies at NICA and STAR BES energies.

P. Batyuk Iu. Karpenko R. Lednicky L. Malinina K. Mikhailov
O. Rogachevsky <u>D. Wielanek</u>

Phase diagram

1st order PT -> latent heat -> Longer emission duration and lifetime of system -> bigger R_{out}, R_{long}

STAR Results

No clear signal!
Only "wide maximum
~20 GeV"
- but few times smaller
than systematic
uncertainties!

STAR Results

- No clear signature observed
 - small effect?
 - suppression after hadronization?
 - other?

vHLLE+UrQMD

vHLLE+UrQMD

- Designed for BES energies
- Parameters of model used for preparing this presentation—tuned for spectra, yields, elliptic flow, no "HBT tuning"
- more in Iu. Karpenko talk (Wednesday)

Particlization proper time

1PT = 1st order PT XPT = crossover transition

$$\tau = \sqrt{t^2 - z^2}$$

Last interaction proper time

STAR data from: PhysRevC.92.014904

★ EoS: XPT

Femtoscopic measurements

Crossover transition

1st order PT Correlation Functions ratio at 7.7 GeV

Femtoscopic measurements

- R_{out} modified by EoS (increased emission duration)
- R_{long} modified by EoS (increased emission time)
- R_{side} not modified by EoS
- Bigger difference between both scenarios at lower energy
- Difference comparable to systematic errors reported by STAR experiment

Femtoscopic measurements

• Systematic errors during fitting in STAR $\pi^{\pm}\pi^{\pm}$ system:

Source	$R_{ m out}$	$R_{\rm side}$	$R_{ m long}$	ϵ_F	
Coulomb Fit Range					FMH – Fraction of Merged Hits
FMH <	7% 9.5%	3%	3%	0.003	werged riits

from: PhysRevC.92.014904

- Gaussian shape $S_g = Ne^{-\left(\frac{r_X}{2R_X}\right)^2 \left(\frac{r_Y}{2R_Y}\right)^2 \left(\frac{r_Z}{2R_Z}\right)^2}$
- 2-gaussian shape $S_{g2} = N \left[\lambda_1 e^{\left(\frac{r_x}{2R_{xl}}\right)^2 + \left(\frac{r_y}{2R_{yl}}\right)^2 + \left(\frac{r_z}{2R_{zl}}\right)^2} + \lambda_2 e^{\left(\frac{r_x}{2R_{xS}}\right)^2 + \left(\frac{r_y}{2R_{yS}}\right)^2 + \left(\frac{r_z}{2R_{zS}}\right)^2} \right]$
- Humpian shape

$$S^{H}(r_{x}, r_{y}, r_{z}) = e^{-F_{S}\left[\left(\frac{r_{x}}{2R_{xS}}\right)^{2} + \left(\frac{r_{y}}{2R_{yS}}\right)^{2} + \left(\frac{r_{z}}{2R_{zS}}\right)^{2}\right] - F_{l}\left[\left(\frac{r_{x}}{2R_{xl}}\right)^{2} + \left(\frac{r_{y}}{2R_{yl}}\right)^{2} + \left(\frac{r_{z}}{2R_{zl}}\right)^{2}\right]}$$

$$F_{S} = \frac{1}{1 + (r/r_{o})^{2}}, \quad F_{l} = 1 - F_{S}$$

Gaussian fit

Good for "out" bad for other directions

χ²/NDF gauss

• 2-gaussian fit

Quite good for all directions

χ²/NDF gauss + gauss

XPT long	2.37	2.50	2.39	1.55	1.73	1.79	4.5	
XPT side	1.09	1.06	1.16	1.49	0.77	0.95	4 3.5	
XPT out	1.63	1.75	1.75	1.42	1.39	1.44	3 2.5	
1PT long	2.06	1.75	1.36	1.37	1.32	1.65	2.5	
1PT side	0.98	1.21	0.82	1.07	0.94	1.68	1.5	
1PT out	0.99	1.23	1.47	1.77	1.53	1.24	0.5	
	7.7	11.5	19.6	27	39	62	0	
√s _{NN} [GeV]								

Humpian fit

Better in "long" and "out"

				-			_	
XPT long	1.95	1.61	1.59	1.18	1.30	1.09	5 4.5	
XPT side	1.55	1.80	1.69	1.91	1.37	1.88	4 3.5	
XPT out	1.42	1.34	1.52	1.06	1.01	1.09	3	
1PT long	1.02	1.26	0.89	0.93	1.00	1.00	2.5 — 2	
1PT side	1.59	1.88	2.31	1.63	1.76	2.23	1.5 1	
1PT out	0.75	0.93	1.24	1.37	1.34	1.18	0.5	
	7.7	11.5	19.6	27	39	62	0	
√s _{NN} [GeV]								

 χ^2/NDF hump

- Hump function advantages
 - Slightly better description of shape
- Two-gaussian fit advantages
 - Clear interpretation of parameters
 - Much easier to fit
 - Stable
 - Core parameters can be obtained from single gaussian fit
 - Analytical form of Correlation Function

Source emission function (7.7 GeV)

Source function

Source function

- Comparable influence of tails in "long" and "out" direction
- No one of tested functions can describe shape of source in entire considered range (0-100 fm)

Source function

NICA & STAR/BES

- BES $\sqrt{s_{NN}} = 7.7 62.4 \ GeV$
- NICA $\sqrt{s_{NN}} = 4 11 \; GeV$

NICA & STAR/BES

BES NICA

To do list

- Simulations with MPD detector
- Checking more sophisticated methods (kaon-kaon correlations, azimuthal correlations)
- Studies with THESEUS model dedicated for NICA energies

Summary

- The differences between both EoS's exist in femtoscopic observables
- Standard pion-pion femtoscopy based on the single-gaussian fits is only weakly sensitive to see them, leading to ~10% difference between the fitted gaussian radii.
- More sophisticated methods (beyond single-gaussian CF parametrization) may be useful to study phase transition phenomena at studied energy range

