LHCb direct searches at HL-LHC

Xabier Cid Vidal (USC)
on behalf of the LHCb collaboration
Searches at HL-LHC Workshop
June 7th 2016

Introduction

Introduction

Introduction

Direct searches at LHCb

- Increasing interest in direct searches at LHCb
 - Can be competitive in certain domains (specially low mass, low p_T objects)
 - Two main types of searches

Searches for exotic resonances in B/D decays

Direct production of new particles

Phys. Rev. Lett. 115, 161802 (2015)

Eur. Phys. J. C75 (2015)

Models (I)

- In general, sensitive to BSM predicting light exotic particles (prompt or detached). Examples
 - Dark photons
 - massive dark sector photon A' couples to SM photon via kinetic mixing
 - signature: resonance in (prompt or displaced) dilepton spectrum
 - di-muon direct search [arXiv:1603.08926]
 - look for A'→e⁺e⁻ in
 D*0→D⁰ A' decays
 [arXiv:1509.06765]

Models (II)

- In general, sensitive to BSM predicting light exotic particles (prompt or detached). Examples
 - Simplified models with spin-0 di-muon light resonances
 - Connects directly with hints from outer-space experiments (Fermi-LAT, AMS, ...)
 - Includes dark-photons but also other simple models, such as THDMII, NMSSM
 - In [arXiv:1601.05110], recast using small fraction of LHCb's Run 1 data

Models (III)

- In general, sensitive to BSM predicting light exotic particles (prompt or detached). Examples
 - Models with a composite dark sector
 - parton shower in the dark sector followed by displaced decays of dark pions back to SM jets
 - Emerging jets composed of displaced tracks and many different vertices within the jet cone
 - LHCb could also measure exclusively new particles (e.g., dark pions)

[arXiv:1502.05409]

Exp. considerations (I)

- Obvious disadvantage: LHCb collects less data than ATLAS/CMS and has worse acceptance for several searches
- However, advantages in terms of:
 - PID (e.g., RICH to separate K/π)
 - Momentum resolution
 - IP and SV resolution
 - Soft triggers

- For instance, can trigger detached di-muons with $p_T \sim 1$ GeV/c
- Moving towards purely software based trigger (after LS2)

Exp. considerations (II)

 In practice that means we can look into complementary phase space regions

For LLP→di-jet analysis [Eur. Phys. J. C75 (2015)]

Exp. considerations (III)

Sensitivity to long lived particles

450 460 470 480 490 500 510 520 530 540 550

 $m_{\pi^+\pi^-}$ [MeV/c²]

- → reconstructable decay-lengths are:
 - within VELO: ideally ~50 cm (standard more like ~20 cm)
 - up to TT: ~200 cm
 - minimum detachment sensitivity \sim around τ lifetime

Exp. considerations (IV)

Can also use RICH to look for new exotic particles!

- → Likelihood to separate particles according to their masses
- In this case, separate Exotic heavy particles from Drell-Yan muons

→ Proof-of-concept in [Eur. Phys. J. C75 (2015)].
Powerful technique for several exotic models!

LHCb future

- ◆ Run 1&2: expect collect ~8 fb⁻¹ in total
- LS2: upgrade of LHCb detector to allow running at higher luminosity
 - upgrade of vertex detector, tracking system, PID.
 - upgrade of all electronics to allow trigger-less (40 MHz) readout. 100% efficiency on key channels
- 2020~2030: run at ~5x higher luminosity to collect about 50 fb⁻¹ (pile-up~1-2)
- ◆ Beyond 2030... High Luminosity LHCb? Collect 300 fb⁻¹ at pile-up ~50?
 - Would require Phase-2 upgrade (new detectors?). Under discussion…!

Conclusions

- LHCb should be an useful complement to ATLAS/
 CMS in certain phase space regions
 - very light searches because of trigger
 - anything that requires excellent secondary vertexing
- ◆ We expect to take ~50 fb⁻¹ of data, hopefully more!
- For us, energy not so important, it's intensity...
- New trigger-less readout will be key: could achieve very efficient trigger for low mass searches!
- Possibility to develop new detectors beyond 2030