

FCC Task 11 RHA - PROGRESS MEETING

Georgi Gorine – PhD Student at EP-DT / EDLAB

Supervisor at CERN: Supervisor at EPFL:

Dr. Federico Ravotti Prof. Jean-Michel Sallèse

OUTLINE = MAIN DELIVERABLES

- D5.3: Development of a Radiation Sensor for FCC / Testing Facilities
 - Analysis of state-of-the-art technologies for radiation measurement
 - Study of existent RADMON sensors at LHC;
 - Design, realization, and testing of an innovative dosimetry solution.
- D2.2: Evaluation of current irradiation facilities suitable for FCC at CERN and available worldwide
 - Evaluate limitations of current irradiation facilities joining irradiation tests (IRRAD, GIF++, CHARM)
 - Any other suitable external facilities? (Database!)
 - Produce a report with specifications and proposal of upgrade programmes for an FCC-ready facility;

- Main Deliverables for FCC WPII
- D5.3: Development of a Radiation Sensor
 - Requirements for FCC
 - RADFET Performance at High Dose
 - Radiation Sensor Development
- D2.2: Evaluation of current irradiation facilities
 - Radiation Environment at GIF++ vs. FCC Requirements
 - Irradiation Facilities Database
- Conclusions

Deliverable D5-3 – FCC Radiation Sensor

- □ **HL-LHC 3ab**⁻¹ (Target for current IRRAD)
 - Fluence = 1.5x10¹⁶ cm⁻² , Dose = 4.8MGy
- □ FCC 3ab⁻¹
 - Fluence = 2.8x10¹⁶ cm⁻², Dose = 9 MGy

□ FCC 30ab⁻¹

• Fluence = 2.8x10¹⁷ cm⁻², Dose = 90 MGy

For FCC experiments very high dose levels are expected in the inner detectors

- Are there any available candidate technologies?
- Are our RADMONs still good?

RADFET PERFORMANCE IN CMS(IP5)

- RADFETs heavily irradiated in hadron field (analysis ongoing):
 - Studying annealing and other damage related phenomena.
- Until 2012, during phase 1, integrated luminosity of ~30 fb⁻¹
 - RADFETs integrated 60 kGy
- In 2015, total luminosity reached 4 fb⁻¹
 - Same RADFET integrated additional ~5 kGy in 2 months of operation,
- In 2016 expected luminosity of 35 fb⁻¹ [estimation based on Chamonix`16]
 - Corresponding to a additional dose of ~70kGy.

EP-DT Detector Technologies

TEST AT ULTRA HIGH DOSE

- Currently testing RADFETs also with mono-energetic particles
 - Target TID: 10s MGy.
- Simultaneous test of RADFETs with different SiO₂ thickness of:
 - 130 nm and 250 nm.
- Experimental setup in IRRAD since May 2016
 - Allows truthful characterization of MOS structure (each pin wire bonded)
 - Test bench ready for future structure (see next slides)
- Data collection and analysis ongoing

5cm

EP-DT Detector Technologies

- Main Deliverables for FCC WPII
- D5.3: Development of a Radiation Sensor
 - Requirements for FCC
 - RADFET Performance at High Dose
 - Radiation Sensor Development
- D2.2: Evaluation of current irradiation facilities
 - Radiation Environment at GIF++ vs. FCC Requirements
 - Irradiation Facilities Database
- Conclusions

MGy DOSIMETRY

Clear necessity of novel dosimetry technologies for MGy range:

- Known trade-offs and challenges:
 - Functioning over a <u>very large</u> dose/fluence range (in experiments);
 - Very few publications on MGy (solid state) dosimetry (HL-LHC, ITER, XFEL).
- Ideal radiation sensor features:
 - Measurement and monitoring in a mixedradiation environment of Total Ionizing Dose, Displacement Damage and Single Event Effects;
 - Reduced size and Wireless readout, etc.
- Other FCC-driven requirements/specifications may arise.

https://indico.cern.ch/event/467114/

DEVELOPMENT OF DOSIMETRY FOR FCC

- Development of a novel dosimetry solution for **FCC radiation levels** based on metal nanostructures of *nanometer thickness*.
 - Innovative concept! (to our knowledge)
- Studying the **impact of radiation on the nanolayer** with a complete *electrical, optical* and *geometrical* characterization.
- Several test structures are being fabricated with different geometrical (thickness, W, L, shape) properties of the nanolayer.

100mm test Wafer

Picture before AI deposition

EP-DT Detector Technologies

Georgi Gorine

PROCESS FLOW

Step	Process description	Cross-section after process			
01	<i>Pt Sputtering</i> Material : <i>Pt (47s – 200nm)</i> Machine: Spider 600 Thickness: <i>10 nm</i> <i>(5 Wafers: 10,30,50,70,100 nm)</i>		07	Double PR coating for Lift Off Machine: ACS200 Gen3	
02	Photoresist coating Machine: ACS200 Gen3 PR: AZ ECI 3007 Thickness : 1.0 μm		08	Exposure Machine: MLA 150	
03	Exposure Machine: MLA 150 Dose : 130 mJ/cm ² , Def=-5		09	Dose : 105 mJ/cm ² , Def=-7 PR Development with ACS200	-
04	PR development with ACS200	-		Metal Sputtering Machine: DP650 Metal :Al (RTU_Al_unif) Thickness : 200 nm (377 sec) 300 nm (566 sec)	
05	Dry etching Machine: STS Material: Pt etch Selectivity: 1:8		10		
	Etch Rate: 0.035 um/min		11	Wet Bench: Remover 1165 + IPA + Ultrasounds	
06	Photoresist strip Machine: UTF remover 1165 + Oxygen Plasma with Tepla300			Where prob	lems occurred
06	Photoresist strip Machine: UTF remover 1165 + Oxygen Plasma with Tepla300			Where prob	lem

EP-DT Detector Technologies

PROBLEM with AI Lift-Off

EP-DT Detector Technologies

ĆÉRN

RESULTING STRUCTURES

EP-DT Detector Technologies

- Main Deliverables for FCC WPI I
- D5.3: Development of a Radiation Sensor
 - Requirements for FCC
 - RADFET Performance at High Dose
 - Radiation Sensor Development
- D2.2: Evaluation of current irradiation facilities
 - Radiation Environment at GIF++ vs. FCC Requirements
 - Irradiation Facilities Database

Conclusions

GAMMA FACILITY GIF++

- PH-RADMON based dosimetry system fully installed at GIF++ by INRNE/EP-DT (AIDA)
 - Up to 8 movable RADMONs monitoring dose levels in the bunker.
 - Used to make a full map of the Radiation Field
 - Users are now deploying them on their setups.
- Evaluation for FCC:
 - What level of dose expected in FCC for muon detectors?

RADMON sensor

Protection case and flexible cabling

CERN

DOSE RATE MEASUREMENT

Position error of ± 10 cm

EP-DT Detector Technologies

FINAL Measured Fitted ~ 1/2 • Simulated SULTS (Att.Factor I)

Label Z [m]		Sim[mGy/h]	mGy/h] Meas[mGy/h]		
R_Da	0.45	2213(521)	2330(531)	5%	
R_Db	1	440 (47)	470 (48.3)	7%	
R_Dc	5.48 18 (1)		16.1 (1)	-11%	
R_Ua	-0.45	2274 (536)	2251 (531)	-1%	
R_Ub	-1.27	283 (25)	249 (24)	-12%	
R_Uc	-2.95	55 (3)	40 (3)	-25%	
R_Ud	-5.79	18 (1)	20 (2)	12%	
FIT	Dose Rate = 485.32 _* Z ^{-1.979}				

Simulations and first measurements of the Radiation Field in the New Gamma Irradiation Facility (GIF++) at CERN

Dorothea Pfeiffer^{*,1,2}, Georgi Gorine², Ali Day², Adrian Fabich², Joffrey Germa², Roberto Guida², Martin Jaekel, Federico Ravotti² Hans Reithler³ Abstract submitted for 2016 IEEE NSS/MIC

MUON CHAMBERS FOR FCC

In 2014 GIF was updated to GIF++ (with $\sim x30$ times stronger source) for testing of Muon Chambers for HL-LHC era.

 Expected requirement:
 From simulations, cumulated dose in muon chambers at FCC :

- In 10 years max 100 kGy.
- Testing aging at current GIF++:
 - Cumulating at 0.5 Gy/h would require >22 years of non stop irradiation

CERN

- Main Deliverables for FCC WPI I
- D5.3: Development of a Radiation Sensor
 - Requirements for FCC
 - RADFET Performance at High Dose
 - Radiation Sensor Development
- D2.2: Evaluation of current irradiation facilities
 - Radiation Environment at GIF++ vs. FCC Requirements
 - Irradiation Facilities Database
- Conclusions

D2.2 – CERN IRRADIATION FACILITIES DB

In the framework of AIDA2020 and D2.2, creation of the reference database of irradiation facilities at CERN, in EU, and Worldwide.

- http://cern.ch/irradiation-facilities
- Portal for CERN facilities operational
- DB structure implemented
 - Data being filled from EP/EN existing lists
- Auto-maintenance feature
 - Automatic (annual) reminders to facility responsible persons being implemented
- Allows a "look into the future", which internal/external facilities could be used by future FCC community?

	Imaduton D8 *	Homepage						
	CERN Accelerating science	Sign in Directory	-					
		HOME AIDA2020 DATABASE CONTACT						
	La contraction							
	https://irradiation- O - A C A Details	×	Add facility Form					
			J					
	Contact Person		Institute/Organization Details	^				
Name:	Contact Person	Name:	Institute/Organization Details	^				
Name: Email:	Contact Person Name of contact person Email of contact person	Name: Address:	Institute/Organization Details Institute Name Address	^				
Name: Email: Phone:	Contact Person Email of contact person Email of contact person Phone Number of contact person	Name: Address: City:	Institute/Organization Details Institute Name Address City	^				
Name: Email: Phone:	Contact Person Email of contact person Email of contact person Phone Number of contact person	Name: Address: City: Country:	Institute/Organization Details Institute Name Address City Country	^				
Name: Email: Phone:	Contact Person Email of contact person Email of contact person Phone Number of contact person	Name: Address: City: Country: Website:	Institute/Organization Details Institute Name Address City Country Institute Website	^				

	Facility Data		Irradiation Conditions					
Name:	Facility Name	FORM FIE	FORM FIELD		NO	N/A	See Comm	
Source:	Type of Source (e.g. Synchrotron, Co-60, etc)	Is an Active F	Is an Active Readout of the sample		0	0	0	
Radiation:	Particle Type/Field of Radiation (e.g. Protons,Neutrons,etc)	possible during	g irradiation?	0	0	0	0	
Energy:	Energy [eV] of the source	Is there any S	ample Dosimetry available?	0	0	0	0	
Activity:	Activity [Bg] of the source	Will the sampl after irradiatio	e be considered Radioactive n?	0	0	0	C	
Power:	Power [W] of the source	Can the humi	dity be controlled during	0	0	0	C	
Min Dose Rate:	Minimum Dose Rate	Can the temp	erature be controlled	0	0	0	C	
Max Dose Rate:	Maximum Dose Rate	Min Temperature:	Minim	um Ten	nperatu	re		
Min Flux:	Minimum Particle Flux	Max						
Max Flux:	Maximum Particle Flux	Temperature	Maxim	um Ten	nperatu	ne 📃		
Pulsed or Continuos:	Pulsed	Dosimetry Type:	If sample dosimetry available,	write d	own wł	nich one	(e.g. a	
Pulse Width:	If pulsed source	Irradiation volume:	Available volume for Irradiati	on (e.g.	2x2x2	:m3,etc.	.)	
Repetition Time:	If pulsed source	Irradiation Comments:	Add here, if needed, any com Conditions (max 300 chars).	iments/e	letails o	n Irradia	ation	
	Safety ELD YES NO N/A c ^{See}	Special	Accessibilit	y				
	Comme	115	MEC.					

CERN

D2.2 – TESTING CAPABILITIES AT CERN

Facility	Particle	Energy	Intensity/Beam Spot	Irradiation Time	In one Year
IRRAD	P+	24 GeV/c	~I-3x10 ¹⁰ p/cm²/s (5x5 mm²)	~200days/y (based on run 2015)	~37 MGy
CHARM	mixed-field (24 GeV/c p+)	HEH>100MeV	10 ⁸ -10 ¹¹ HEH/cm ² /h (~cm ²)	~200days/y (based on simulations)	~10-100 kGy
GIF++	γ	0.662 MeV	14TBq ¹³⁷ Cs (~2.5Gy/h at 50cm)	Source on for 70% of the time (with no attenuators)	~15 kGy
CC60	γ	1.17 MeV, 1.33 MeV	IOTBq ⁶⁰ Co (~350 Gy/h, small samples)	Source on 70% of the time (assumption)	∼few MGy
HiRadMat	p+ or HI	440 GeV or I73GeV/u	10 ⁹ - 10 ¹¹ p/pulse (< 1mm²)	few weeks/year	-
CERF	mixed-field (120 GeV/c HEH)	<100 MeV n ⁰ + HEH	<10 ⁸ p/spill (on the target)	few weeks/year	-

Adapted from: F. Ravotti (EP/DT) – 02/2016

CÉRN

- Main Deliverables for FCC WPI I
- D5.3: Development of a Radiation Sensor
 - Requirements for FCC
 - RADFET Performance at High Dose
 - Radiation Sensor Development
- D2.2: Evaluation of current irradiation facilities
 - Radiation Environment at GIF++ vs. FCC Requirements
 - Irradiation Facilities Database

Conclusions

CONCLUSIONS

D5.3: Development of a Radiation Sensor for FCC / Testing Facilities

- Analysis of state-of-the-art technologies for radiation measurement:
 - ✓ **DONE**: Existing technologies investigated.
- Study of existent RADMON sensors at LHC;
 - ✓ **ONGOING**: Analysing data from LHC RADMONs and performing ad hoc tests in IRRAD.
- Design, realization, and testing of an innovative dosimetry solution.
 - <u>2nd ROUND</u>: First production did not go well but problems are now understood and be fixed in a second production. Test bench in IRRAD ready for testing.
 - NEW CONCEPT: Thinking of other dosimetry device based on Junctionless FET (collaboration with A.Mapelli, and EP-DT PhD student J.Bronuzzi)
- D2.2: Evaluation of current irradiation facilities suitable for FCC at CERN and available worldwide
 - Evaluate limitations of current irradiation facilities joining irradiation tests
 - ONGOING: Actively participating in daily IRRAD and GIF++ operation
 - Any other suitable external facilities? (Database!)
 - FILLING UP: Irradiation Facilities website is online and being filled with EN/EP data.

www.cern.ch

Thank you!