

CERN Open Lab Summer Student Lecture
July 27, 2016

Outline

- Machine Learning Recap
- Ensemble Classifiers
- Artificial Neural Networks
- Deep Learning
- Hands-on examples
- Summary

Classifier Performance

Classifier Performance

Receiver Operating Characteristic (ROC)

Commonly used metric

Shows the relationship between correctly classified positive cases (sensitivity) and incorrectly classified negative cases (1-effectivity)

Perfect Classifier

Ensemble Methods

Ensemble Methods

Suppose you have a **collection** of discriminants $f(x, w_k)$, which, individually, perform only **marginally** better than random guessing.

From such discriminants, weak learners, it is possible to build highly effective ones by averaging over them:

Jerome Friedman & Bogdan Popescu (2008)

Boosting

Boosting:

- R. Shapire, 1990
- Turn weak learners to strong with weighted ensemble of iterative learners
 - Adaptation
- Benefits: excellent accuracy

Adaptive Boosting

Adaptive Boosting

Train in stages

- Adaptive weights
 - ADABoost: Freund & Schapire 1997
- Misclassified events get a larger weight going into the next training stage
 - Classify with a majority vote from all trees
- Works very well to improve classification power of "greedy" decision trees
 - can be used with other classifiers

Adaptive Boosting

Repeat K times:

- 1. Create a decision tree $f(x, \mathbf{w})$
- 2. Compute its error rate ε on the *weighted* training set
- 3. Compute $\alpha = \ln (1 \varepsilon) / \varepsilon$
- 4. Modify training set: *increase weight* of *incorrectly classified examples* relative to the weights of those that are correctly classified

Then compute weighted average $f(x) = \sum \alpha_k f(x, w_k)$

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. **55** (1), 119 (1997)

First 6 Decision Trees

First 100 Decision Trees

Averaging over a Forest

Proceed to Tutorial (c5.0)

Part III: Boosting

Hands-On Part III

- 1. Login to CERNBox: http://cernbox.cern.ch
- 2. Open Swan: http://swan001.cern.ch
- 3. Open new terminal
- 4. Clone the code: git clone https://github.com/iml-wg/c50.git
- 5. Go to c50 directory: cd c50/

Tutorial Part III

Examples: playing golf, breast-cancer

- Create your first boosted classifiers
 - Decision trees
 - c5.0 –b –f breast-cancer
 - Rules
 - c5.0 –b –r –f breast-cancer
 - Look at Training and Testing error rates

Cross Validation

Cross Validation

Generalization of train-test split for more accurate classifier performance evaluation

- Randomly split dataset into N equal partitions
- In each fold of N-fold cross-validation
 - Use N-1 samples to train, leftover to test
 - Repeat N times

Neural Networks (NN)

Graphical Representation

Network Weights

Compute optimal network weights with derivatives dE/dw

Calculate gradients of errors for adjustable weights

Inputs go forward in feed-forward neural networks Errors go backward! **Back-propagation**

Neural Networks

Can approximate any continuous function

Complexity determined by number of hidden layers and hidden nodes/layer

Many types of neural networks!

Watch out for overtraining

Hilbert's 13th Problem

Problem 13: Prove the conjecture

In general, it is *impossible* to do the following:

$$f(x_1,...,x_n) = F(g_1(x_1),...,g_n(x_n))$$

But, in 1957, Kolmogorov *disproved* Hilbert's conjecture! Today, we know that functions of the form

$$f(x_1, \dots, x_I) = a + \sum_{j=1}^{H} b_j \tanh \left[c_j + \sum_{i=1}^{I} d_{ji} x_i \right]$$

can provide arbitrarily accurate approximations. (Hornik, Stinchcombe, and White,

Neural Networks 2, 359-366 (1989))

Computer Vision (CV) Benchmarks

First super-human result in 2015*

* Google/Microsoft 4.9%

Deep Learning Neural Networks:

- Tremendous performance improvement
 - Training more complex models
 - Increased Depth
 - Enlarged Width
 - Feedback/Convolution
 - Novel activation functions
 - Effective strategies against over-fitting
 - Regularization

Convolutional Neural Networks:

Convolutional Neural Networks:

Recurrent Neural Networks:

Cycles

Higgs Boson Example:

Tuning deep neural network architectures.

Hyper parameters	Choices
Depth	2,3,4,5,6 layers
Hidden units per layer	$100,\!200,\!300,\!500$
Learning rate	0.01, 0.05
Weight decay	0, 0.00001
Pre-training	none, autoencoder
	multi-task autoencoder
Input features	low-level, high-level
	complete set

Best:

- 5 hidden layers
- 300 neurons per layer
- Tanh hidden units, sigmoid output
- No pre-training
- Stochastic gradient descent
- Mini batches of 100
- Exponentially-decreasing learning rate
- Momentum increasing from .5 to .99 over 200 epochs
- Weight decay = 0.00001

8% improvement

P. Baldi, et. al. 2014

Proceed to Tutorials (TMVA)

TMVA

Toolkit for Multivariate Analysis:

- **HEP ML** workhorse
- Easy to get started with
- ROOT integrated

- In production by LHC experiments
 - basic and advanced methods implemented

Hands-On Part IV

- 1. Open Swan: http://swan.web.cern.ch
- 2. Go to Gallery then Machine Learning
- 3. Click on "ribbon" to execute examples directly in Swan
- 4. Try different examples

Summary

- Many machine learning methods available: pick the one that best suits your problem
 - Good starting points: boosted decision trees, neural networks
 - Then: random forests, support vector machines, deep/bayesian neural nets

Resources

Literature

- G. James, et al. "Introduction to Statistical Learning" Springer 2013
- C.M. Bishop "Pattern Recognition and Machine Learning" Springer 2006
- J. R. Quinlan "C4.5: Programs for Machine Learning" Morgan Kaufmann 1992

- Website: http://iml.cern.ch
- Next meeting Aug 25 (monthly)
 https://indico.cern.ch/event/548789/
 - Forum/Mailing-list/LPCC Group
 - https://simba3.web.cern.ch/simba3/ SelfSubscription.aspx?groupName=lhcmachinelearning-wg (cern e-group)
 - Please join if you are interested in ML topics

Additional Material

Input Space

Feature Space

Generalization of the Fisher discriminant

Boser, Guyon and Vapnik, 1992

Basic Idea

Data that are non-separable in *d*-dimensions may be better separated if mapped into a space of higher (usually, infinite) dimension

$$h:\mathfrak{R}^d \to \mathfrak{R}^\infty$$

As in the Fisher discriminant, a hyper-plane is used to partition the high dimensional space $f(x) = w \cdot h(x) + c$

Consider *separable* data in the high dimensional space

green plane: w.h(x) + c = 0

red plane: $w.h(x_1) + c = +1$

blue plane: $w.h(x_2)+c=-1$

subtract blue from red

$$w.[h(x_1) - h(x_2)] = 2$$

and normalize the high dimensional vector w $\hat{\mathbf{w}}.[h(\mathbf{x}_1) - h(\mathbf{x}_2)] = 2/||w||$

 $m = \hat{\mathbf{w}}.[h(x_1) - h(x_2)]$, the distance between the **red** and **blue** planes, is called the **margin**. The best separation occurs when the margin is as large as possible.

Note: because $m \sim 1/||w||$, maximizing the margin is equivalent to minimizing $||w||^2$

Label the **red** dots y = +1 and the **blue** dots y = -1. The task is to minimize $||w||^2$ subject to the constraint

$$y_i (w.h(x_i) + c) \ge 1, \quad i = 1 ... N$$

that is, the task is to minimize

$$L(w,c,\alpha) = \frac{1}{2} \|w\|^2$$
$$-\sum_{i=1}^{N} \alpha_i \left[y_i \left(w \cdot h(x_i) + c \right) - 1 \right]$$

where the $\alpha > 0$ are Lagrange multipliers

When $L(\mathbf{w}, \mathbf{c}, \boldsymbol{\alpha})$ is minimized with respect to w and c, the function $L(\mathbf{w}, \mathbf{c}, \boldsymbol{\alpha})$ can be transformed to

$$E(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j h(x_i) \cdot h(x_j)$$

At the minimum of $E(\alpha)$, the only non-zero coefficients α are those corresponding to points *on* the **red** and **blue** planes: the so-called **support vectors**. The key idea is to replace the scalar product $h(x_i).h(x_j)$ between two vectors of infinitely many dimensions by a **kernel function** $K(x_i, x_j)$.

• The (unsolved) problem is how to choose the correct kernel for a given problem?

Bayesian Neural Networks

Bayesian Neural Networks

$$p(w \mid T) = p(T \mid w) p(w) / p(T)$$

over the parameter space of the functions

$$n(x, w) = 1 / [1 + exp(-f(x, w))]$$

can estimate $p(s \mid x)$ as follows

$$p(s \mid x) \sim n(x) = \int n(x, w) p(w \mid T) dw$$

n(x) is called a **Bayesian Neural Network** (BNN)

Bayesian Neural Networks

Generate Sample:

N points $\{w\}$ from $p(w \mid T)$ using a Markov chain Monte Carlo (MCMC) technique and

average over the last *M* points

$$\mathbf{n}(\mathbf{x}) = \int \mathbf{n}(\mathbf{x}, \mathbf{w}) \, \mathbf{p}(\mathbf{w} \mid \mathbf{T}) \, \mathrm{d}\mathbf{w}$$

$$\sim \sum n(x, w_i) / M$$

Genetic Algorithms

Central idea: adaptation. Inspired by evolutionary biology concepts of mutation, selection, cross-over (recombination) J.H. Holand, 1975

- Begin with a large population of random solutions
 - Evaluate each one
 - Fitness function (some form of S/\sqrt{B})
 - Keep the best subset
 - Use it to build new solutions
 - Allow mutation, cross-over
 - Optimize over number of epochs/cycles

Over-Training

Over-training or over-fitting sometimes occurs when too many parameters for data size

Diagnose with

- Divergent training-testing error slopes
- Kolmogorov-Smirnov tests of classifier output

Treat with

- Reduce number of parameters
- Prune decision trees

Function Estimation Regression

Function Estimation

Comet Problem by Gauss (1805)

Approximate trajectory of a comet from observations

Approach: minimize difference between measurement and predictions in a systematic fashion

Vary regression model parameters

Function Estimation

Machine Learning:

From classification to regression:

- modify the evaluation criteria used in the learning algorithm
 - from maximum separation gain
 - to minimal variance

Function Estimation

Inputs: Training examples $\{\langle x^{(i)}, y^{(i)} \rangle\}$ of unknown function f. $x^{(i)}, y^{(i)}$:

Output: hypothesis h that best approximates target function f (for example energy measured by the detector)