

Supporting Scientific Research with the Energy Sciences Network

David Mitchell - Network Engineer mitchell@es.net

Inder Monga - Acting Director

ESnet Trans-Atlantic Services

* Department of Energy Office of Science National Labs

- Ames Ames Laboratory (Ames, IA)
- ANL Argonne National Laboratory (Argonne, IL)
- BNL Brookhaven National Laboratory (Upton, NY)
- FNAL Fermi National Accelerator Laboratory (Batavia, IL)
- JLAB Thomas Jefferson National Accelerator Facility (Newport News, VA)

LBNL Lawrence Berkeley National Laboratory (Berkeley, CA)

- ORNL Oak Ridge National Laboratory (Oak Ridge, TN)
- PNNL Pacific Northwest National Laboratory (Richland, WA) PPPL Princeton Plasma Physics Laboratory (Princeton, NJ)
- SLAC. SLAC National Accelerator Laboratory (Menio Park, CA)

ESnet Trans-Atlantic Services

- Primary connectivity provided by three 100Gbps circuits and one 40Gbps trans-Atlantic circuits
- Three additional intra-Europe 100Gbps ciruits and hubs at CERN, London and Amsterdam
- Supports the LHCOPN connections to US LHC Tier 1 sites
 - ATLAS Tier 1 at Brookhaven National Lab (BNL)
 - CMS Tier 1 at Fermi National Accelerator Laboratory (FNAL)
- Supports the LHCONE overlay network for connectivity to U.S. based Government and University LHC collaborators

Trans-Atlantic Traffic

US to Europe traffic:

Trans-Atlantic Traffic

Europe to US traffic:

ESNet Cloud Services Pilot

- Started in 2014 in cooperation with US ATLAS at BNL
- BNL was already a user of Amazon AWS and had encountered problems with network capacity.
- ESNet worked with BNL to set up a 10Gbps Direct Connection to AWS East. Later we switched to a 2x10G Direct Connect to the Amazon AWS West region.
- ESnet sites such as BNL utilized our OSCARS service to provision point to point circuits from their network edge to the Direct Connect links.
- BNL originally mainly used the AWS East instance.
- FNAL and PNNL (Pacific Northwest National Laboratory) also participated in the pilot.

Cloud Services Pilot Conclusions

- Data distribution is a challenge
- Connectivity between regions of AWS is not sufficient for R&E needs, never mind connectivity between different cloud providers
- Direct Connect worked well but is expensive. Over \$20K/year for a 10Gbps connection.
- Peering connections can provide reasonable bandwidth if they are sized appropriately.
- Virtual Private Cloud (VPC) services provide benefits similar to Direct Connect with respect to routing

Cloud Services In Progress

- Utilize VPC functionality to provide routing control
- Upgrade public peerings to 100Gbps
- Tunnel traffic back to the site in IPSec or similar

Cloud Service Next Steps

- Implement methods of optimizing routing to R&E peers
- Create virtual 'site routers' at the cloud provider
 - iBGP back to the site and eBGP to ESnet

ESNet Performance Monitoring

ESNet utilizes multiple systems to monitor and measure our network performance.

- Passive measurement
 - SNMP statistics
 - NetFlow statistics
- Active measurement
 perfSONAR

ESNet SNMP Statistics

- ESNet collects SNMP from all managed devices
- Internally developed software (ESxSNMP) is used for collection
- 30 second interval for traffic counters
- In addition to collecting standard OIDs we collect some devicespecific OIDs as well to monitor OSCARS circuits.
- Visualization is done via Graphite (<u>https://graphite.es.net</u>)
- SNMP traffic data is also presented on the portal (<u>https://my.es.</u> <u>net</u>)
- Active project underway to research processing SNMP data in the cloud using Google Compute Platform

SNMP Statistics Via The Portal

ESNet Monitoring via NetFlow

- NetFlow monitoring is utilized to help us understand now just how much traffic is on the network but what it is and where it is going.
- Primary collection and analysis tool is Arbor Networks Peakflow SP
- Site-facing information provide via the ESnet portal https://my.es.net
- Raw NetFlow data archived in case it is needed for ad-hoc analysis.

Arbor Peakflow

Allows us to build sophisticated queries and graphs in real-time but the interface isn't really suitable for external use.

Explore Traffic				
DETAILS Period: Today 🗿 Graph Type: Stacked 😋 Units: bps 💿 🥵 Update				
FILTER 1 Type: interface O Values: to_lhcone_cern, to_lhcone_cern		Select Interface		
FILTER 2 Type: r_as O Values:				
bps (- In / + Out)	a a a a		10 m	Jun 2016
6 G				
5 G				
4G	·····			
36				
26				
10 millimana and Manual attala bridger	marine hama	Manul	Made Mark	Manna A
1500 1600 1700 1800 1900 2000 2100 2200 2300 100 200 Wed8	300 4:00 5:00 600	7:00 800 9:00	0 10:00 11:00	1200 1300 1400
Select All 🔀 Clear All			Current	Average Max PCT95
Interface	<u>R As</u>	<u>In</u>	Out	<u>Total (In + Out)</u>
cern-513-cr5.es.net to_lhcone_cern cern-513-cr5->cern(as513):100ge:site_conn-c_v4v6_/3vpn-lhcone:show:intercloud	CSUNET-NE	0.00 bps	17.81 Mbps	17.81 Mbps
cern-513-cr5.es.net to_lhcone_cern cern-513-cr5->cern(as513):100ge:site_conn-c_v4v6_l3vpn-lhcone:show:intercloud	VANDERBILT	0.00 bps	142.82 Mbps	142.82 Mbps
cern-513-cr5.es.net to_lhcone_cern cern-513-cr5->cern(as513):100ge:site_conn-c_v4v6_/3vpn-lhcone:show:intercloud	SOUTHERN-CROSSROADS-SC	0.00 bps	142.82 Mbps	142.82 Mbps
Cern-513-cr5.es.net to_lhcone_cern cern-513-cr5->cern(as513):100ge:site_conn-c_v4v6_/3vpn-lhcone:show:intercloud	WISC-MADISON	0.00 bps	55.22 Mbps	55.22 Mbps
cern-513-cr5.es.net to_lhcone_cern	ULTRALIGHT	0.00 bps	2.34 Mbps	2.34 Mbps

Netflow in the ESNet portal

The portal provides sites with pre-configured views of NetFlow-based statistics. The data is obtained from Arbor on the back-end.

Active Measurement via perfSONAR

- ESNet is one of the main development partners on the perfSONAR project.
- ESNet has perfSONAR deployed at about 50 locations throughout the network.
- Some sites have separate OWAMP and BWCTL servers.
- The MaDDash package is used to maintain dashboards of tests.

ESNet perfSONAR Dashboard

See http://ps-dashboard.es.net

Questions?

